Caracterização florística e fitofisionômica da Serra do Condado, Minas Gerais, Brasil

Daniel Salgado Pifano^{1,4}, Arthur Sérgio Mouco Valente¹, Hisaias de Souza Almeida¹
Pablo Hendrigo Alves de Melo¹, Ricardo Montianeli de Castro² & Eduardo van den Berg³

¹Programa de Pós-graduação em Engenharia Florestal, Universidade Federal de Lavras – UFLA, CP 3037, CEP 37200-000 Lavras, MG, Brasil, e-mail: spgdcf@ufla.br

²Programa de Pós-graduação em Botânica, Universidade Estadual de Feira de Santana – UEFS, CEP 44031-460 Feira de Santana, BA, Brasil

³Departamento de Biologia, Universidade Federal de Lavras – UFLA, CP 3037, CEP 37200-000 Lavras, MG, Brasil, e-mail: evandenb@ufla.br

⁴Autor para correspondência: Daniel Salgado Pifano, e-mail:danielfloristico@yahoo.com.br

PIFANO, D.S., VALENTE, A.S.M., ALMEIDA, H.S., MELO, P.H.A., CASTRO, R.M. & van der BERG, E. **Floristic and phytophysiognomies characterization of the Serra do Condado, Minas Gerais, Brazil**. Biota Neotrop., 10(1): http://www.biotaneotropica.org.br/v10n1/en/abstract?article+bn01010012010.

Abstract: Little is known about the flora of the Espinhaço Sul range. However, the environmental conservation of such complex has been threatened, mainly due to the potential mineral richness lying there. The aim of this study was to the floristic and physiognomy characterization of Serra do Condado, located in the Serro County, MG. Thus, fortnight field campaigns were carried out during the period of May/2006 to May/2007, in order to collect floristic material and to characterize the area. Furthermore, the value in area of each physiognomic in the constitution of the landscape was made through the software ArGis 9.0 and the floristic similarity among the observed physiognomic aspects, were tested by the Sørensen similarity index. Atlantic Semideciduos Montane Forests, Riparian Forests, Swamps and Woody Shrub Vegetation over "Canga" were found in the area. Semidecidual Forest corresponds to 80% of the local vegetation, presenting 426 species (391 exclusives) distributed in 83 families. The families that had the largest number of species were Fabaceae (40), Asteraceae (30) and Myrtaceae (30). Following came, Woody Shrub Vegetation over "Canga", covers 13% of the studied area, and in it were found 94 species (74 exclusives), distributed among 29 families. Asteraceae (9), Orchidaceae (7) e Bromeliaceae (5) were distinguished by their species abundance in this physiognomy. Riparian Forests are not so representative, constituting only 5% of the forested area. In this physiognomy, 74 species (54 exclusives) belonging to 28 families were found, of these, Fabaceae (7), Piperaceae (4) and Annonaceae (3) were the most representative ones. Due to anthropogenic disturbances, Swamps cover only 2% of the area. As it showed characteristics such as constant hydric saturation it had the highest proportion of exclusive found species, 18 out of 19, being Cyperaceae and Melastomataceae (5) the richest families. The flora found at Serra do Condado was differentiated in relation to their habitats (physiognomies), because the values obtained by the Sørensen index were less than 10% for all other comparisons. This shows how fundamental floristic studies are for knowing the vegetation of areas being both geographically extensive and biologically diverse. The great variety of environment presented and the flora richness associated to this formation aggregate conservation and maintenance value to the Espinhaço Sul range flora, Minas Gerais.

Keywords: floristic similarity, canga, Espinhaço range, diversity, Atlantic Domain.

PIFANO, D.S., VALENTE, A.S.M., ALMEIDA, H.S., MELO, P.H.A., CASTRO, R.M. & van der BERG, E. Caracterização florística e fitofisionômica da Serra do Condado, Minas Gerais, Brasil. Biota Neotrop., 10(1): http://www.biotaneotropica.org.br/v10n1/pt/abstract?article+bn01010012010.

Resumo: O complexo serrano do Espinhaço Sul é ainda floristicamente desconhecido e a conservação destas serras está ameaçada em função de sua exclusiva riqueza mineral. A Serra do Condado, localizada no município de Serro, MG (18° 37' 30" S e 43° 22' 30" W) é um bom exemplo de como as atividades de mineração estão distantes da conservação destes ecossitemas e por tal razão o presente estudo teve como objetivo a caracterização florística e fitofisionômica desta serra. As campanhas de campo foram quinzenais e ocorreram entre os meses de maio/2006 a maio/2007. Foram coletados apenas os materiais botânicos em estágio fenológico reprodutivo. Os mesmos foram incorporados aos acervos dos herbários CESJ, RB e ESAL. O valor em área de cada fisionomia na constituição da paisagem foi feito através do software ArGis 9.0 e a similaridade florística entre as fisionomias foi realizada mediante cálculo do índice de Sørensen. Na área estudada foram encontradas Florestas Estacionais Semideciduais Montanas, Matas Ciliares, Brejos e Vegetação Arbustivo-Lenhosa sobre Canga. A floresta semidecídua montana corresponde a 80% da vegetação local, apresentando 426 espécies (391 exclusivas) distribuídas em 83 famílias. As famílias com maior número de espécies foram Fabaceae (40), Asteraceae (30) e Myrtaceae (30). A floresta ciliar é pouco representativa, cobrindo 5% da área florestada. Nessa formação foram encontradas 74 espécies

(54 exclusivas) pertencentes a 28 famílias. As famílias mais representativas foram Fabaceae (sete), Piperaceae (quatro) e Annonaceae (três). Os brejos, devido a perturbações antrópicas, cobrem apenas 2% da área. Por fatores como a saturação hídrica constante essa fitofisionomia apresentou o maior número de espécies exclusivas, 18 das 19 encontradas, sendo Cyperaceae e Melastomataceae (cinco) as famílias mais ricas. A Vegetação arbustivo-lenhosa sobre canga cobre 13% da área. Nela foram encontradas 94 espécies (74 exclusivas), distribuídas em 29 famílias. Asteraceae (nove), Orchidaceae (sete) e Bromeliaceae (cinco) destacaram-se pela riqueza de espécies nessa fisionomia. A flora da Serra do Condado foi diferenciada entre seus hábitats (fitofisionomias), pois os valores obtidos para o índice de Sørensen foram inferiores a 10% em todas as comparações. Isso demonstra o quanto estudo florísticos são fundamentais para o conhecimento da vegetação de áreas extensas geograficamente e diversas biologicamente. A variedade de ambientes apresentados e a riqueza da flora associada às suas formações agregam valor de conservação e manutenção da flora dos complexos serranos do Espinhaço Sul de Minas Gerais.

Palavras-chave: similaridade florística, canga, cadeia do Espinhaço, diversidade, Domínio Atlântico.

Introdução

O estado de Minas Gerais abrange as principais fisionomias florestais do Domínio Atlântico, o qual corresponde a aproximadamente 35% do território estadual. No entanto, é a fisionomia da Floresta Estacional Semidecidual que predomina, constituindo mais de 85% da área florestal original deste Domínio em Minas Gerais (Scolforo & Carvalho 2006). A Cadeia do Espinhaço é parte fronteiriça deste mosaico e é considerada área prioritária para conservação da Flora de Minas Gerais, devido à concentração do maior número de endemismos do país e também do maior número de táxons fanerogâmicos considerados raros, tudo isso considerando toda a flora nacional (Drummond et al. 2005, Giulietti et al. 2008).

Mesmo sendo prioridade em termos de conservação, a cobertura florestal primitiva desta região de Minas Gerais foi reduzida a remanescentes esparsos, uma vez que o histórico de perturbação dessas áreas sempre esteve atrelado à forte atividade minerária (Brandão & Gavilanes 1990). De fato, a mineração vem modificando abruptamente os Complexos Rupestres de Altitude no Espinhaço, principalmente em sua vertente mais ao sul (Dean 1996, Werneck et al. 2000).

Estudos florísticos são importantes em países como o Brasil, pois revelam em seus resultados informações capazes de diminuir a discrepância de recursos públicos destinados ao crescimento econômico em detrimento do que é investido para frear a perda de biodiversidade consequente ao mesmo e, nesse intuito, muitos têm sido concentrados na Cadeia do Espinhaço, especialmente em solos quartzíticos (Andrade et al. 1986, Giulietti et al. 1987, Meguro et al. 1994, Stannard 1995, Conceição & Giulietti 2002). Já a vegetação sobre canga, conta com um número menor de levantamentos e os mesmos são recentes, com destaque apenas para os trabalhos realizados na região do Quadrilátero Ferrífero (Mourão & Stehmann 2007, Viana & Lombardi 2007, Vincent & Meguro 2008). Certamente, o maior esforço de trabalho ainda concentra-se nas florestas da bacia do rio Doce (Lombardi & Gonçalves 2000, Werneck et al. 2000, Melo & Salino 2002, Lopes et al. 2002) e Jequitinhonha (Néri et al. 2007).

Esses trabalhos e outros desenvolvidos na região sudeste têm demonstrado a existência de diferenças significativas na composição florística e na estrutura de remanescentes localizados em áreas relativamente próximas (Oliveira-Filho et al. 2005). No fim do século XX surgiu a preocupação em usar métodos numéricos para comparar a ocorrência de espécies, testar as associações e, então, definí-las, com base nas relações florísticas estabelecidas quantitativamente por índices de similaridade (Silva & Shepherd 1986, Oliveira-Filho 1993, Oliveira-Filho & Ratter 1995, Araújo 1998, Scudeller 2002). Porém, estudos como esses ainda são pouco numerosos ou tratam apenas de uma formação vegetal (Oliveira-Filho et al. 1994a, 1994b, Salis et al. 1995, Torres et al. 1997, Oliveira-Filho & Fontes 2000,

Scudeller et al. 2001). Nesse sentido, as conexões florísticas das fitofisionomias que compõem o Domínio Atlântico também são pouco conhecidas, haja vista que os trabalhos realizados bem como os métodos de análise encerram-se apenas no componente arbóreo dessas florestas (Gentry 1990, Oliveira-Filho & Fontes 2000, Oliveira-Filho et al. 2005, Pereira et al. 2007, Murray-Smith et al. 2008). Estudos florísticos que consideram todas as formas de vida e com informações fitogeográficas mensuráveis, ou seja, com registros em herbários dos materiais testemunho, são fundamentais na compreensão das relações existentes entre as fisionomias que compõem o Domínio Atlântico e ainda são escassos pelo alto tempo demandado associado à inerente freqüência em campo exigida por tais levantamentos.

A escassez de informações, aliada à crescente intervenção antrópica sobre os ambientes naturais motivaram o desenvolvimento do presente estudo, que teve como objetivos caracterizar a composição da flora vascular das diferentes fitofisionomias presentes na Serra do Condado no município de Serro, Minas Gerais investigando a composição e similaridade entre as fisionomias de vegetação, além de fornecer a descrição e a caracterização das mesmas.

Material e Métodos

1. Área de estudo

O município do Serro (Figura 1) está situado na microrregião de Conceição do Mato Dentro onde destacam-se as intrusões de minério de ferro que afloram especialmente no alto das serras. A região está inserida no domínio geomorfológico da Serra do Espinhaço, com formas fluviais de dissecação (CETEC, 1983). A área de estudo (18° 31' 19" S - 43° 22' 38" O e 18° 34' 47" S - 43° 23' 36" O) está localizada na borda oriental deste domínio, numa elevação topográfica localmente denominada Serra do Condado, com extensão territorial aproximada de 1000 ha, num relevo regional extremamente movimentado, cujas altitudes variam de 805 a 1.135 m.

O clima regional (classificação de Köppen) é do tipo Cwa: mesotérmico úmido subtropical, com verão quente e chuvas concentradas, e inverno frio e seco com mais de 120 dias de estiagem por ano. De acordo com os dados disponíveis no Sistema de Meteorologia e Recursos Hídricos de Minas Gerais (SIMGE), na área de estudo a precipitação anual média anual é de 1.515 mm e a temperatura média anual é de 18,3 °C.

A cobertura vegetal da área de estudo (Figura 1) é marcada por gradientes vegetacionais que incluem diversas fisionomias do Domínio Atlântico, Floresta Estacional Semidecidual Montana, Floresta Estacional Semidecidual Aluvial (tratadas aqui como Mata Ciliar), Vegetação Arbustivo-Lenhosa sobre Canga, Campo Rupestre

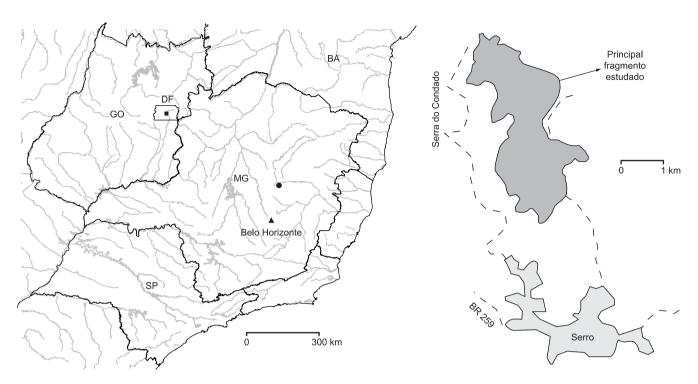


Figura 1. Localização da Serra do Condado, município de Serro, MG

Figure 1. Geographic situation of the Serra do Condado, Serro County, MG

e Brejos, segundo a classificação de Veloso et al. (1991), exceto para a Vegetação Arbustivo-Lenhosa sobre Canga que ainda não possui um concenso terminológico definido. Trata-se de uma Área de Proteção Ambiental – a APA Água das Vertentes - com trechos antropizados (principalmente destinados à pecuária bovina) e extensas áreas de floresta em diferentes estádios sucessionais.

2. Coleta e análise dos dados

A caracterização das fitofisionomias presentes na área de estudo seguiu critérios elaborados por Veloso et al. (1991) e foi realizada baseando-se em observações de campo e na composição de espécies. A quantificação em área de cada fitofisionomia foi realizada com o auxílio do software ArcGis 9.3, de mapas e imagens disponibilizadas pelo setor de geoprocessamento do Departamento de Engenharia Florestal da Universidade Federal de Lavras.

O levantamento florístico foi realizado através de coletas quinzenais entre os meses de maio de 2006 e maio de 2007, percorrendo-se todas as fitofisionomias da área de estudo, numa extensão amostrada de aproximadamente 500 ha na Serra do Condado, ou seja, praticamente a metade de toda a extensão territorial da mesma. É importante mencionar que a outra metade não foi contemplada por questões de acesso, fundiárias e de propriedade, já que em muitas fazendas não se obteve a autorização do proprietário para a execução do estudo. Foram coletados e herborizados, segundo técnicas padronizadas por Fidalgo & Bononi (1984), todos os espécimes de plantas vasculares encontradas em estado fenológico reprodutivo. As exsicatas foram incorporadas aos acervos dos herbários CESJ da Universidade Federal de Juiz de Fora, RB do Jardim Botânico do Rio de Janeiro e ESAL da Universidade Federal de Lavras.

A determinação dos táxons fundamentou-se em literatura especializada (principalmente para as Pteridophyta), além de consultas a especialista e a herbários nacionais. Os táxons foram classificados em famílias segundo o sistema da APGII (2003) e através da obra de Souza & Lorenzi (2008). Para o grupo Pteridophyta, as famílias de monilófitas estão de acordo com Smith et al. (2006), as de Lycophyta seguem Tryon, R. M. & Tryon, A. F. (1982). É importante mencionar que, na separação dos hábitos, as arvoretas foram incluídas entre as arbóreas, sendo as plantas eretas e lenhosas distintas apenas como arbustos ou árvores. Para tal, seguiu-se a classificação das formas de vida de Raunkiaer (1934) adaptada aos conceitos de organografia atuais. A estimativa da similaridade entre as fitofisionomias seguiu as fórmulas descritas em Kent & Coker (1992), para o índice de Sørensen.

Resultados

O levantamento florístico da vegetação da Serra do Condado, em todos seus hábitats, registrou 575 espécies, distribuídas em 336 gêneros e 107 famílias de plantas vasculares (Tabela 1). As famílias com maior número de espécies foram: Fabaceae (51), Asteraceae (45), Myrtaceae (39) Melastomataceae (24), Rubiaceae (22) e Euphorbiaceae (18). Algumas famílias com elevada riqueza em áreas inseridas em Complexos Rupestres de Altitude, como Poaceae e Orchidaceae, foram subamostradas neste estudo que concentrou os maiores esforços de coleta nos hábitats florestais.

A Floresta Estacional Semidecidual Montana constituiu 80% da vegetação local em termos de área e está localizada entre as cotas altitudinais de 600 a 900 m, já que acima deste limite se encotram zonas ecotonais de Floresta Montana e Vegetação Arbustivo-Lenhosa sobre Canga. Os fragmentos de floresta montana apresentam-se sob a forma de manchas esparsas em diferentes estádios de sucessão e estão localizados em encostas íngremes e nos topos de morro. Em grande parte os fragmentos evidenciavam efeito de borda acentuado em função dos acessos abertos para a corrida minerária que se instalou no local. Nesses locais, destaca-se a presença de pequenas árvores exigentes de luz como Mabea fistulifera Mart., Mabea pohliana (Benth.) Müll.Arg., Miconia latecrenata (DC.) Naudin e Miconia sellowiana Naudin. A heterogeneidade microclimática definiu a ocorrência e distribuição, nos hábitats úmidos, das poucas macroepífitas encontradas como a Orchidaceae Polystachya sp. e a Bromeliaceae

Tabela 1. Espécies inventariadas na Serra do Condado, Serro, MG, Brasil segundo seu hábito (ARB = Arbusto, ARV = Árvore, ERV = Erva, ERV.AR = Erva arborescente, TREP = Trepadeira, H.PAR = Hemiparasitas ; HOPA = Holoparasitas; EPI = Epífitas), hábitat de ocorrência (1= Floresta Estacional Semidecidual Montana, 2 = Mata Ciliar, 3 = Brejo e 4 = Vegetação arbustivo-lenhosa sobre canga) e número de coletor (Cas = R.M.Castro, Pif = D.S.Pifano & Val = A.S.M.Valente).

Table 1. Species sampleds at Range mountain of the Serra do Condado, Serro County, MG, Brazil by habitat (ARB = Shrub, ARV = Tree, ERV = Herbaceus, ERV.AR = Woody Herbaceus, TREP = Vines, H.PAR = Hemiparasits; HOPA = Holoparasits; EPI = Epiphytes), occurrence habitat (1= Montane Semidecidual Atlantic Forest, 2 = Riverine forest, 3 = Heath and 4 = Woody-Shrub vegetation on Canga) and voucher specimens (Cas = R.M.Castro, Pif = D.S.Pifano & Val = A.S.M.Valente).

Família/Espécie	Hábito	Hábitats	Material testemunho
ACANTHACEAE			
Geissomeria schottiana Nees	ARB	2	Cas 1296
Herpetacanthus rubiginosus Nees	ARB	2	Cas 1275
Justicia sp.	ERV	1,2	Pif 589
Mendoncia coccinea Vell.	TREP	1	Cas 1365
Ruellia elegans Poir.	ERV	1	Pif 630
Acanthaceae indet.	ARB	2	Pif 709
ALISMATACEAE			
Echinodorus macrophyllus (Kunth) Micheli	ERV	3	Cas 1372
AMARANTHACEAE			
Alternanthera brasiliana (L.) Kuntze	ERV	1	Pif 632
ANACARDIACEAE			
Astronium fraxinifolium Schott ex Spreng.	ARV	1	Val 403
Schinus terebinthifolius Raddi	ARV	2	Val 448
Tapirira guianensis Aubl.	ARV	1	Cas 1269
Tapirira obtusa (Benth.) J.D.Mitch.	ARV	1	Pif 730
ANNONACEAE			
Annona cacans Warm.	ARV	1	Pif 745
Duguetia lanceolata A.StHil.	ARV	1	Cas 1207
Guatteria australis A.StHil.	ARV	1	Val 471
Guatteria villosissima A.StHil.	ARV	1	Val 455
Oxandra sp.	ARV	2	Pif 733
Rollinia laurifolia Schltdl.	ARV	1	Cas 1235
Rollinia leptopetala R.E.Fr.	ARV	2	Pif 647
Rollinia mucosa (Jacq.) Baill.	ARV	1	Val 405
Rollinia sylvatica (A.StHil.) Mart.	ARV	1	Pif 613
Xylopia aromatica (Lam.) Mart.	ARV	1	Cas 669
Xylopia brasiliensis Spreng.	ARV	1	Pif 632
Xylopia emarginata Mart.	ARV	2	Pif 624
Xylopia sericea A.StHil.	ARV	1	Cas 1311
APOCYNACEAE			
Asclepias curassavica L.	ARB	1	Pif 452
Aspidosperma australe Müll.Arg.	ARV	1	Pif 436
Aspidosperma cylindrocarpon Müll.Arg.	ARV	4	Cas 779
Aspidosperma parvifolium A.DC.	ARV	1	Cas 1423
Aspidosperma pyrifolium Mart.	ARV	1	Pif 396
Blepharodon nitidum (Vell.) J.F.Macbr.	TREP	4	Val 460
Ditassa eximia Decne.	TREP	4	Cas 1126
Himatanthus lancifolius (Müll.Arg.) Woodson	ARV	1	Pif 651
Mandevilla scabra (Roem. & Schult.) K. Schum.	TREP	4	Pif 395
Prestonia tomentosa R. Br.	TREP	1	Pif 656
Stipecoma peltigera (Staldem.) Mull.Arg.	TREP	4	Pif 753
AQUIFOLIACEAE			
Ilex affinis Gardn.	ARV	1	Pif 724
Ilex brevicuspis Reissek	ARV	1	Morfoesp

Biota Neotrop., vol. 10, no. 1

Tabela 1. Continuação...

Família/Espécie	Hábito	Hábitats	Material testemunho
Ilex cerasifolia Reissek	ARV	1	Morfoesp
Ilex sapotifolia Reissek	ARV	1	Pif 736
Ilex theezans Mart. ex Reissek	ARV	1	Pif 449
ARACEAE			
Anthurium solitarium (Vell.) Schott	EPI	2	Cas 539
Anthurium sp.	EPI	2	Val 452
Anthurium sp. 2	EPI	1	Pif 751
Philodendron sp.	EPI	2	Pif 442
ARALIACEAE			
Schefflera calva (Cham.) Frodin & Fiaschi	ARV	1	Val 453
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	ARV	1	Cas 1129
ARECACEAE			
Acrocomia aculeata (Jacq.) Lodd. ex Mart.	ARV	1	Pif 735
Geonoma schottiana Mart.	ERV.AR	2	Pif 385
ARISTOLOCHIACEAE		_	
Aristolochia grandiflora Sw.	TREP	1	Val 331
Aristolochia sp.	TREP	1	Val 297
ASTERACEAE	11.21	-	, m 25,
Acanthospermum australe (Loefl.) Kuntze	ERV	1	Cas 1379
Achyrocline satureioides (Lam.) DC.	ERV	1	Pif 661
Acritopappus confertus (Gardner) R.M. King & H. Rob.	ARB	4	Morfoesp
Ageratum conyzoides L.	ERV	1	Morfoesp
Alomia fastigiata Benth.	ERV	1	Cas 1376
Ambrosia sp.	ARB	1	Pif 654
Baccharis dracunculifolia DC.	ARB	1	Pif 733
Baccharis schultzii Backer	ARB	1,4	Pif 664
Baccharis schutzu Backer Baccharis tridentata Gaudich.	ARB	4	Pif 736
Baccharis trimera (Less.) DC.	ARB	1	Cas 1384
Bidens segetum Mart. ex Colla	TREP	1	Pif 653
Bidens sp.	ARB	4	Pif 755
Chromolaena maximilianii (Schrader) R.M. King & H. Rob.	ARB	1	Pif 746
	ARB	1	
Cosmos sp.	ARB	_	Pif 718 Val 470
Cosmos sp2		1 4	
Dasyphyllum spinescens (Less.) Cabrera	ARB	·	Cas 1378
Elephantopus mollis Kunth	ERV	1,2	Cas 1379
Emilia sonchifolia (L.) DC.	ERV	1	Cas 1426
Eremanthus erythropappus (DC.) MacLeish	ARV	1,4	Cas 1377
Eremanthus glomerulatus Less.	ARV	1,4	Pif 766
Eremanthus incanus (Less.) Less.	ARV	1,4	Pif 721
Eremanthus sp.	ARV	4	Cas 1383
Eupatorium sp. 1	ARB	1	Pif 657
Eupatorium sp. 2	ARB	1	Val 467
Galinsoga parviflora Cav.	ERV	1	Pif 703
Gochnatia polymorpha (Less.) Cabrera	ARV	1	Cas 1382
Heterocondylus alatus (Vell.) R.M. King & H. Rob.	ARB	1	Pif 582
Hollophylla sp.	ERV	4	Pif 547
Mikania buddleiaefolia DC.	TREP	1	Cas 1381
Mikania sp.	TREP	1	Pif 681
Mikania sp.2	TREP	1	Val 468
Mikania trichophila DC.	TREP	1	Pif 559
Piptocarpha axillaris (Less.) Baker	ARV	1	Val 369

Tabela 1. Continuação...

Família/Espécie	Hábito	Hábitats	Material testemunho
Piptocarpha macropoda Baker	ARV	1	Pif 395
Sigesbeckia orientalis L.	ERV	1	Pif 394
Sonchus oleraceus L.	ERV	1	Pif 387
Taraxacum officinale F.H. Wigg.	ERV	1	Morfoesp
Trixis divaricata (Kunth) Spreng.	ARB	1	Morfoesp
Verbesina glabrata Hook. & Arn.	ARB	1	Pif 354
Vernonanthura divaricata (Spreng.) H.Rob.	ARV	4	Pif 730
Vernonia aurea Mart. ex DC.	ARB	4	Cas 1385
Vernonia polyanthes Less.	ARB	4	Cas 1387
Vernonia sp.	ARB	1	Morfoesp
Wedellia paludosa	ERV	3	Cas 1386
Wulffia stenoglossa (Cass.) DC.	ARB	1	Pif 465
BALANOPHORACEAE			
Langsdorffia hypogea Mart. BEGONIACEAE	НОРА	1	Pif 652
Begonia digitata Raddi.	ERV	2	Cas 593
Begonia aiguata Raddi. Begonia sp.	ERV	2	Morfoesp
BIGNONIACEAE	LKV	2	Worroesp
Anemopaegma setilobum A.H.Gentry	TREP	1	Pif 396
Arrabidaea leucopogon (Cham.) Sandwith	TREP	1	Pif 510
Arrabidaea triplinervia ((Mart. ex DC.) Baill. ex Bureau.	TREP	1	Pif 524
Cybistax antisyphilitica (Mart.) Mart.	ARV	1	Cas 711
Fridericia speciosa Mart.	TREP	1	Cas 544
Jacaranda cuspidifolia Mart. ex A.DC.	ARV	1	Pif 728
Jacaranda macrantha Cham.	ARV	1	Pif 389
Jacaranda puberula Cham.	ARV	1	Cas 673
Dolichandra unguiscati (L.) L.G. Lohmann	TREP	1	Pif 569
Sparattosperma leucanthum (Vell.) K.Schum.	ARV	1	Cas 587
Tabebuia chrysotricha (Mart. ex A.DC.) Standl.	ARV	1	Cas 743
Tabebuia serratifolia (Vahl) Nichols	ARV	1	Cas 572
BLECHNACEAE	THE	1	Cas 572
Blechnum brasiliense Desv.	ERV	1	Pif 714
Blechnum occidentale L.	ERV	1	Val 431
BORAGINACEAE	LKV	1	vai 431
Cordia sellowiana Cham.	ARV	1	Cas 554
Cordia trichotoma (Vell.) Arrab. ex Steud.	ARV	1	Pif 745
Cordia sp.	ARV	1	Cas 1348
Boraginaceae sp.	ARV	1	Morfoesp
BROMELIACEAE	AKV	1	Wortoesp
	EDI	4	Monfoon
Alcantarea sp.	EPI	4	Morfoesp
Billbergia porteana Brongn ex.Beer	EPI	4	Pif 742
Dyckia saxatilis Mez	EPI	4	Morfoesp
Tillandsia recurvata (L.) L.	EPI	4	Morfoesp
Vriesea minarum L.B. Sm.	EPI	4	Morfoesp
BURSERACEAE	A DV	2	G 1420
Protium spruceanum (Benth.) Engl. CACTACEAE	ARV	2	Cas 1430
Lepismium cruciforme (Vell.) Miq.	EPI	1	Val 454
CAMPANULACEAE	-J1 1	1	141 IJT
Siphocampylus sp.	ARB	1	Pif 660

Biota Neotrop., vol. 10, no. 1

Tabela 1. Continuação...

Família/Espécie	Hábito	Hábitats	Material testemunho
CANNABACEAE			
Celtis brasiliensis (Gardn.) Planch.	ARV	1,2	Cas 672
Trema micrantha (L.) Blume	ARV	1	Cas 729
CARDIOPTERIDACEAE			
Citronella paniculata (Mart.) R.A.Howard	ARV	1	Pif 738
CASUARINACEAE			
Casuarina equisetifolia L.	ARV	1	Pif 678
CELASTRACEAE			
Cheiloclinium cognatum (Miers.) A.C.Sm.	ARV	2	Val 287
Maytenus evonymoides Reissek	ARV	1	Pif 734
Maytenus ilicifolia Mart.	ARV	1	Pif 746
Maytenus salicifolia Reissek	ARV	1	Cas 777
Salacia elliptica (Mart. ex Schult.) G.Don	ARV	2	Morfoesp
CHRYSOBALANACEAE			
Hirtella gracilipes (Hook.f.) Prance	ARV	1	Cas 742
Hirtella hebeclada Moric.	ARV	1	Pif 758
Licania apetala (E.Mey.) Fritsch	ARV	1	Pif 622
Licania hoehnei Pilg.	ARV	1	Pif 574
Licania kunthiana Hook.f.	ARV	1	Val 447
CLETHRACEAE			
Clethra scabra Pers.	ARV	1	Pif 748
CLUSIACEAE			
Calophyllum brasiliense Cambess.	ARV	2	Morfoesp
Garcinia brasiliensis Mart.	ARV	1	Cas 547
Kielmeyera petiolaris Mart.	ARV	1	Pif 648
COMBRETACEAE			
Terminalia fagifolia Mart.	ARV	1,4	Pif 376
Terminalia glabrescens Mart.	ARV	1	Pif 737
COMMELINACEAE			
Commelina sp.	ERV	1	Val 481
Commelina sp. 2	ERV	1	Val 433
Dichorisandra sp.	ERV	2	Val 480
CONNARACEAE			
Connarus beyrichii Planch.	ARV	1	Pif 722
CONVOLVULACEAE			
Evolvulus sp.	TREP	1	Pif 499
Ipomoea nil (L.) Roth.	TREP	1	Val 483
Ipomoea purpurea (L.) Roth.	TREP	1	Pif 478
Ipomoea sp. 1	TREP	1	Pif 687
Ipomoea sp. 2	TREP	1	Val 473
Merremia macrocalyx (Ruiz ex Pav.) O'Donell	TREP	1	Pif 688
COSTACEAE			
Costus spiralis (Jacq.) Roscoe	ERV	2	Pif 336
CUCURBITACEAE		_	
Gurania sp.	TREP	1	Pif 763
Melothria sp.	TREP	1	Pif 571
Melothrianthus smilacifolius (Cogn.) Mart. Crov.	TREP	1	Pif 729
Momordica indica L.	TREP	1	Morfoesp
Psiguria sp.	TREP	1	Morfoesp
Wilbrandia hibiscoides Silva Manso	TREP	1	Pif 537

Tabela 1. Continuação...

62

Família/Espécie	Hábito	Hábitats	Material testemunho
CUNONIACEAE			
Lamanonia ternata Vell.	ARV	1	Pif 666
CYATHEACEAE			
Cyathea atrovirens (Langsd.& Fisch.) Domin	ERV.AR	2	Pif 725
Cyathea delgadii Sternb.	ERV.AR	2	Cas 1523
CYPERACEAE			
Busbostylis sp. 1	ERV	3	Pif 698
Busbostylis sp. 2	ERV	3	Val 479
Cyperus aggregatus (Willd.) Endl.	ERV	1	Pif 749
Cyperus coriifolius Boeckeler	ERV	1	Cas 1507
Cyperus sp.	ERV	1	Pif 703
Cyperus sp. 2	ERV	4	Val 503
Fuirena umbelatta Rottb.	ERV	3	Pif 702
Rhynchospora exaltata Kunth	ERV	1	Val 507
Ryncosphora sp. 1	ERV	4	Pif 699
Ryncosphora sp. 2	ERV	4	Pif 701
Ryncosphora sp. 3	ERV	4	Pif 748
Scleria mitis P.J. Bergius	ERV	1,2	Pif 751
Scleria sp.	ERV	1	Val 505
Cyperaceae sp.	ERV	3	Pif 697
Cyperaceae sp. 2	ERV	3	Pif 700
DILLENIACEAE			
Davilla rugosa Poir.	TREP	1	Pif 342
DIOSCOREACEAE			
Dioscorea sp.	TREP	1	Val 509
Dioscorea sp. 2	TREP	1	Val 523
ELAEOCARPACEAE			
Sloanea monosperma Vell.	ARV	1	Pif 749
ERICACEAE			
Agarista glaberrima (Sleumer) Judd	ARV	4	Cas 1360
Gaylussacia brasiliensis (Spreng.) Mart.	ARV	4	Val 456
ERYTHROXYLACEAE			
Erythroxylum pelleterianum A.StHil.	ARV	4	Pif 733
EUPHORBIACEAE			
Actinostemon klotzschii (Didr.) Pax	ARV	1	Cas 1498
Alchornea glandulosa Poepp. & Endl.	ARV	1	Cas 741
Alchornea triplinervia (Spreng.) Müll.Arg.	ARV	1	Pif 673
Aparisthmium cordatum (Juss.) Baill.	ARV	1	Cas 770
Croton floribundus Spreng.	ARV	1	Pif 759
Croton lundianus (Didr.) Müll. Arg.	ERV	1	Val 465
Croton salutaris Casar.	ARV	1	Val 508
Croton urucuranus Baill.	ARV	1	Cas 722
Croton verrucosus RadclSm. & Govaerts	ARV	1	Pif 619
Dalechampia tryphylla Lam.	TREP	1	Pif 427
Mabea fistulifera Mart.	ARV	1	Pif 674
Mabea pohliana (Benth.) Müll.Arg.	ARV	1	Cas 1535
Manihot grahamii Hook.	ARV	1,4	Cas 1504
Maprounea guianensis Aubl.	ARV	1	Pif 751
Pogonophora schomburgkiana Miers	ARV	1	Val 513
Sapium glandulosum (L.) Morong	ARV	1	Val 446
Sebastiania sp.	ARV	4	Morfoesp

Biota Neotrop., vol. 10, no. 1

Tabela 1. Continuação...

Família/Espécie	Hábito	Hábitats	Material testemunh
FABACEAE			
Acacia polyphylla DC.	ARV	1	Cas 1514
Albizia niopoides (Spruce) Burkart	ARV	1	Morfoesp
Andira fraxinifolia Benth.	ARV	1	Cas
Andira paniculata Benth.	ARV	4	Pif 768
Bauhinia forficata Link	ARV	1	Val 472
Bauhinia longifolia (Bong.) D.Dietr.	ARV	1	Pif 746
Canavalia picta Mart. ex Benth.	TREP	1	Pif 748
Cassia ferruginea (Schrad.) Schrad. ex DC.	ARV	1	Val 463
Chamaecrista nictitans (L.) Moench.	ERV	1	Val 477
Cleobulia multiflora Mart. ex Benth.	TREP	1	Pif 693
Clitoria sp.	TREP	4	Val 466
Copaifera langsdorffii Desf.	ARV	1	Val 507
Crotalaria sp.	ARB	4	Pif 647
Dalbergia frutescens (Vell.) Britton	ARV	1	Pif 676
Dalbergia nigra (Vell.) Allemão ex Benth.	ARV	1	Pif 735
Dalbergia villosa (Benth.) Benth.	ARV	1	Morfoesp
Desmodium sp.	ERV	1	Pif 485
Enterolobium contortisiliquum (Vell.) Morong	ARV	1	Val 497
Enterolobium timbouva Mart.	ARV	2	Morfoesp
Indigofera suffruticosa Mill.	ARB	1	Cas 1547
Inga cylindrica (Vell.) Mart.	ARV	2	Morfoesp
Inga edulis Mart.	ARV	2	Pif 784
Inga laurina (Sw.) Willd.	ARV	1	Morfoesp
Inga marginata Willd.	ARV	2	Val 521
Inga platyptera Benth.	ARV	2	Morfoesp
Lonchocarpus cultratus (Vell.) AzTozzi & H.C.Lima	ARV	1	Cas 1530
Machaerium acutifolium Vogel	ARV	1	Val 548
Machaerium brasiliense Vogel	ARV	1	Val 536
Machaerium dimorphandrum Hoehne	ARV	1	Pif 763
Machaerium hirtum (Vell.) Stellfeld	ARV	1	Pif 463
Machaerium nictitans (Vell.) Benth.	ARV	1	Val 336
Machaerium villosum Vogel	ARV	1	Cas 1563
Melanoxylon brauna Schott	ARV	1	Cas 1401
Mimosa velloziana Mart.	ARB	1	Pif 691
Piptadenia gonoacantha (Mart.) J.F.Macbr.	ARV	1	Val 540
Piptadenia sp.	TREP	1	Pif 690
Platypodium elegans Vogel	ARV	1	Pif 475
Pseudopiptadenia warmingii (Benth.) G.P.Lewis & M.P.Lima	ARV	1	Morfoesp
Senna cana (Nees & Mart.) H.S.Irwin & Barneby	ARV	4	Morfoesp
Senna macranthera (Collad.) H.S.Irwin & Barneby	ARV	1	Val 474
Senna multijuga (L.C.Rich.) H.S.Irwin & Barneby	ARV	1	Val 363
Senna sp.	ARB	1	Val 475
•		1	
Stryphnodendron polyphyllum Mart. Stylosanthes sp.	ARV ERV	1	Pif 692 Val 476
Swartzia apetala Raddi		1	
	ARV	1	Pif 741
Swartzia multijuga Hayne	ARV	2	Val 511
Swartzia sp. Trahigali danudata (Vogal) Olivaira Filha	ARV	1	Val 356
Tachigali denudata (Vogel) Oliveira Filho	ARV	1	Cas 1430
Tachigali rugosa (Mart. ex Benth.) Zarucchi & Pipoly Fabaceae indet. 1	ARV TREP	1	Cas 1406 Pif 675

Tabela 1. Continuação...

64

Família/Espécie	Hábito	Hábitats	Material testemunho
Fabaceae indet. 2	TREP	1	Pif 694
GENTIANACEAE			
Irlbachia sp.	ERV	4	Cas 1371
HUMIRIACEAE			
Sacoglottis guianensis Malme	ARV	1	Pif 774
HYMENOPHYLLACEAE			
Hymenophyllum sp.	ERV	2	Morfoesp
HYPERICACEAE			
Vismia guianensis (Aubl.) Pers.	ARV	1	Val 461
Vismia magnoliifolia Schltdl. & Cham	ARV	1	Pif 564
INDETERMINADA			
Indeterminada sp. 1	ARV	1	Cas 1531
Indeterminada sp. 2	ARV	1	Pif 587
LACISTEMATACEAE			
Lacistema hasslerianum Chodat	ARV	1	Pif 463
Lacistema pubescens Mart.	ARV	1	Pif 434
LAMIACEAE			
Aegiphila sellowiana Cham.	ARV	1	Cas 1364
Hyptidendron asperrimum (Epling) Harley	ARV	1	Cas 1377
Hyptis coriacea Benth.	ARB	4	Pif 667
Hyptis rhypidiophylla Briq.	ARB	4	Pif 668
Vitex megapotamica (Spreng.) Moldenke	ARV	1	Val 524
Vitex polygama Cham.	ARV	4	Pif 578
Lamiaceae indet. 1	ARB	1	Pif 669
Lamiaceae indet. 2	ARB	1	Pif 670
LAURACEAE			
Aiouea saligna Meisn.	ARV	1	Pif 467
Aniba firmula (Nees & Mart.) Mez	ARV	1	Val 459
Endlicheria paniculata (Spreng.) J.F.Macbr.	ARV	1	Cas 1488
Nectandra lanceolata Nees	ARV	1	Cas 1511
Nectandra membranacea (Sw.) Griseb.	ARV	1	Pif 744
Nectandra nitidula Nees	ARV	2	Pif 763
Nectandra oppositifolia Nees	ARV	1	Val 528
Ocotea aciphylla (Nees) Mez	ARV	1	Cas 1354
Ocotea bicolor Vattino	ARV	1	Val 433
Ocotea brachybotrya (Meisn.) Mez	ARV	1	Val 512
Ocotea diospyrifolia (Meisn.) Mez	ARV	2	Pif 741
Ocotea lancifolia (Schott) Mez	ARV	1,2	Pif 479
Ocotea laxa (Nees) Mez	ARV	1	Pif 397
Ocotea minarum (Nees) Mez	ARV	1	Morfoesp
Ocotea odorifera (Vell.) Rohwer	ARV	1	Cas 1537
Ocotea pomaderroides (Meisn.) Mez	ARV	4	Pif 763
Persea major (Nees) L.E. Kopp	ARV	1	Cas 1375
Persea rufotomentosa Nees & C. Mart.	ARV	1	Cas 1364
LECYTHIDACEAE	11111	1	Cub 130 i
Cariniana estrellensis (Raddi) Kuntze	ARV	2	Pif 730
Lecythis pisonis Cambess.	ARV	1	Morfoesp
LOGANIACEAE	THEY	1	Monocsp
Spigelia schlechtendaliana Mart.	ARB	4	Morfoesp
LORANTHACEAE	TIND	7	Monoesp
Struthanthus concinnus Mart.	H.PAR	1	Pif 346

Tabela 1. Continuação...

Família/Espécie	Hábito	Hábitats	Material testemunho
Struthanthus marginatus (Desr.) Blume	H.PAR	1	Pif 644
LYTHRACEAE			
Cuphea sp.	ARB	3	Cas 1363
Lafoensia pacari A.StHil.	ARV	1,4	Pif 651
MALPIGHIACEAE			
Byrsonima intermedia A.Juss.	ARV	1,4	Cas 1505
Banisteriopsis salicifolia (DC.) B.Gates	TREP	4	Val 484
Byrsonima laxiflora Griseb.	ARV	1,4	Pif 717
Byrsonima sericea DC.	ARV	4	Cas 1401
Byrsonima verbascifolia (L.) DC.	ARV	1,4	Val 420
Heteropterys byrsonimifolia A.Juss.	ARV	4	Pif 754
Heteropterys umbellata A. Juss.	TREP	4	Pif 733
Peixotoa tomentosa A. Juss.	ARB	4	Val 491
MALVACEAE			
Abutilon rufinerve A.StHil.	ARB	4	Cas 1414
Eriotheca candolleana (K.Schum.) A.Robyns	ARV	1	Cas 1497
Eriotheca macrophylla (K.Schum.) A.Robyns	ARV	1	Pif 745
Hibiscus sp.	ARB	4	Pif 684
Luehea candicans Mart. & Zucc.	ARV	1,4	Cas 1297
Luehea divaricata Mart. & Zucc.	ARV	1	Cas 1462
Luehea grandiflora Mart. & Zucc.	ARV	1	Cas 1359
Luehea paniculata Mart. & Zucc.	ARV	1	Pif 768
Pavonia sp.	ARB	1	Pif 685
Pseudobombax endecaphyllum (Vell.) A.Robyns	ARV	1	Pif 483
Sida carpinifolia L.	ARB	1	Pif 647
Sida sp.	ERV	1	Pif 658
Triumfetta semitriloba Jacq.	ARB	1	Val 471
Waltheria indica L.	ARB	1	Pif 677
Waltheria sp.	ARB	1	Pif 689
Malvaceae indet.	ARB	1	Pif 659
MARANTACEAE	7 Htb	•	111 007
Calathea sp.	ERV	2	Pif 631
MELASTOMATACEAE	LICV	<i>-</i>	111 031
Chaetostoma sp.	ARB	1,2	Cas 1539
Clidemia hirta (L.) D. Don	ARB	1,4	Cas 1397
Huberia laurina DC.	ARV	2	Cas 1536
Leandra dasytricha (A.Gray) Cogn.	ARB	1	Val 566
Leandra sericea DC.	ARB	1	Val 364
Leandra xanthostachya Cogn.	ARB	1	Cas 1564
Miconia argyrophylla DC.	ARV	1	Pif 756
Miconia argyrophytta DC. Miconia cf. petropolitana Cogn.	ARV	1	Pif 630
Miconia ch. perropolitana Cogn. Miconia chartacea Triana	ARV	1	Cas 1397
		1	
Miconia cinnamomifolia (DC.) Naudin	ARV	1	Cas 1395
Miconia latecrenata (DC.) Naudin	ARV	1	Val 496
Miconia rubiginosa (Bonpl.) DC.	ARV	4	Val 516
Miconia sellowiana Naudin	ARV	1	Pif 739
Miconia sp. 1	ARV	1	Pif 686
Miconia sp. 2	ARV	1	Cas 1394
Ossaea amygdaloides (Mart. & Schr.) Triana	TREP	2	Val 551
Tibouchina arborea (Gardn.) Cogn.	ARV	1	Pif 593
Tibouchina pulchra Cogn.	ARB	1	Pif 742

Tabela 1. Continuação...

Família/Espécie	Hábito	Hábitats	Material testemunho
Tibouchina multiflora Cogn.	ARB	4	Cas 1393
Melastomataceae indet. 1	ARB	3	Cas 1388
Melastomataceae indet. 2	ARB	3	Cas 1389
Melastomataceae indet. 3	ARB	3	Cas 1390
Melastomataceae indet. 4	ARB	3	Cas 1391
Melastomataceae indet. 5	ARB	3	Cas 1392
MELIACEAE			
Cabralea canjerana (Vell.) Mart.	ARV	1	Pif 580
Cedrela fissilis Vell.	ARV	1	Pif 650
Guarea macrophylla Vahl	ARV	2	Val 549
MENISPERMACEAE			
Abuta selloana Eichler	TREP	1	Pif 364
Chondrodendron platiphyllum (A.StHil.) Miers	TREP	1	Val 427
Cissampelos glaberrima A.StHil.	TREP	1	Cas 1366
MONIMIACEAE			
Mollinedia argyrogyna Perkins	ARV	1	Pif 770
Mollinedia widgrenii A.DC.	ARV	1	Pif 610
MORACEAE			
Brosimum guianense (Aubl.) Huber	ARV	1	Pif 603
SCHIZAEACEAE			
Ligodium venustum Sw.	TREP	2	Pif 615
SIMAROUBACEAE	11021	_	111 010
Simarouba amara Aubl.	ARV	1	Cas 1324
Simarouba versicolor A.StHil.	ARV	4	Morfoesp
SIPARUNACEAE	11111	•	Monoesp
Siparuna cujabana (Mart.) A.DC.	ARV	1	Cas 1352
Siparuna guianensis Aubl.	ARV	1	Pif 775
SMILACACEAE	1111	•	111 / / 6
Smilax brasiliensis Spreng.	TREP	1	Val 487
Smilax campestris Griseb.	TREP	1	Pif 646
Smilax sp.	TREP	4	Cas 1545
SOLANACEAE	TREI	•	Out 15 15
Aureliana fasciculata var. tomentella (Sendtn.) Barbosa & Huntz.	ARB	1	Pif 777
Brunfelsia brasiliensis (Spreng.) L.B. Sm. & Downs	ARB	1	Cas 1355
Cestrum amictum Schltdt.	ARB	1	Morfoesp
Dyssochroma viridiflora (Sims) Miers	ARB	2	Morfoesp
Solanum bullatum Vell.	ARV	1	Morfoesp
Solanum leucodendron Sendtn.	ARV	1	Cas 1546
Solanum paniculatum L.	ARV	1	Val 499
Solanum pseudoquina A.StHil.	ARV	1	Cas 1354
Solanum sp. 1	ARB	1	Cas 1353
Solanum sp. 1 Solanum sp. 2	ARB	1	Cas 1356
Solanum swartzianum Roem. & Schult.	ARV	1	Cas 1317
Solanum velleum Thunb.	ARV	1	Pif 776
STYRACACEAE	AIXV	1	111 //0
Styrax camporum Pohl	ARV	1	Cas 1548
Styrax camporum Poni Styrax latifolius Pohl	ARV	2	Cas 1548 Pif 760
Styrax pohlii A.DC. SYMPLOCACEAE	ARV	1	Val 554
	A DV	4	Val 557
Symplocos mosenii Brand	ARV	4	Val 557

Tabela 1. Continuação...

Família/Espécie	Hábito	Hábitats	Material testemunho
THYMELAEACEAE			
Daphnopsis fasciculata (Meisn.) Nevling	ARV	1	Pif 761
URTICACEAE			
Cecropia glaziovi Snethl.	ARV	1	Cas 1323
Cecropia hololeuca Miq.	ARV	1	Morfoesp
Cecropia pachystachya Trécul	ARV	1	Val 502
Hemistylus sp.	ARV	2,4	Cas 1333
Urera nitida (Vell.) Brack	ARB	1	Morfoesp
VELLOZIACEAE			•
Barbacenia flava Mart. ex Schult. & Schult. f.	ERV	4	Cas 1367
Barbacenia exscapa Mart.	ERV	4	Cas 1549
VERBENACEAE			
Aloysia virgata (Ruiz & Pav.) A.Juss.	ARV	1,2	Pif 762
Citharexylum myrianthum Cham.	ARV	1	Morfoesp
Lantana brasiliensis Link	ARB	1	Morfoesp
Lantana camara L.	ARB	1	Pif 682
Lantana fucata Lindl.	ARB	1	Pif 672
Lippia sidoides Cham.	ARB	4	Val 458
Stachytarpheta reticulata Mart. ex Schauer	ARB	4	Pif 679
Stachytarpheta cajanensis Vahl	ARB	1	Pif 671
VIOLACEAE			
Anchietea pyrifolia A.StHil.	TREP	1	Pif 767
Hybanthus brevicaulis (Mart.) Taub.	ARB	1,2	Cas 1405
VITACEAE			
Cissus sp.	TREP	1	Morfoesp
Cissus sulcicaulis (Baker) Planch.	TREP	1	Cas 1332
VOCHYSIACEAE			
Callisthene fasciculata (Spreng.) Mart.	ARV	1	Pif 443
Callisthene major Mart.	ARV	1	Cas 1566
Callisthene minor Mart.	ARV	4	Cas 1550
Qualea cordata (Mart.) Spreng.	ARV	1	Pif 769
Qualea dichotoma (Mart.) Warm.	ARV	4	Morfoesp
Qualea selloi Warm.	ARV	1	Morfoesp
Qualea sp.	ARV	1	Cas 1368
Vochysia cf. pyramidalis Mart.	ARV	4	Pif 388
Vochysia cinnamomea Pohl	ARV	4	Cas 1366
Vochysia magnifica Warm.	ARV	1	Morfoesp
ZINGIBERACEAE			r
Hedychium coronarium J. König	ERV	3	Val 556

Vriesea sp. De forma geral, o sub-bosque encontrava-se bastante iluminado com a ocorrência de grupos que o caracterizam em formações semideciduais como Geonoma schottiana Mart., Psychotria carthagenensis Jacq., Psychotria cephalantha (Müll.Arg.) Standl., Psychotria nuda (Cham. & Schltdl.) Wawra, Psychotria suterella Müll.Arg., Psychotria vellosiana Benth. e Rudgea jasminoides (Cham.) Müll.Arg. Foram encontradas 426 espécies pertencentes a 83 famílias nessa formação (Tabela 2). As famílias com maior número de espécies foram: Fabaceae (40), Asteraceae (30), Myrtaceae (30), Rubiaceae (21) e Euphorbiaceae (15). A distribuição das espécies nos hábitos indicou predomínio das árvores em relação aos demais, sendo os mais representativos: Arbóreo (314), Herbáceo (30), Trepador (20), Arbustivo (18) e Epifítico (dois). É importante mencionar que em todos os fragmentos houve ocorrência de árvores consideradas de madeira nobre, como os respectivos casos da braúna (Melanoxylon brauna Schott - Fabaceae) e do jequitibá (Cariniana estrellensis (Raddi) Kuntze – Lecythidaceae).

As Matas Ciliares foram encontradas em faixas estreitas margeando os pequenos rios da região compondo crca de 5% da vegetação local em área. Essa formação inicia-se em depressões (nos fundos de vale constituindo talvegues) de encostas, onde a água das nascentes é canalizada em cursos d'água alimentando córregos. Nesses locais, há contato direto das formações ciliares com a Floresta Montana, e sua composição florística é diversificada e também marcada pela ocorrência de espécies exclusivas desses locais mais úmidos, como Cyathea atrovirens (Langsd. & Fisch.) Domin e Cyathea delgadii

Tabela 2. Número de famílias, gêneros e espécies exclusivas amostradas nas fitofisionomias da Serra do Condado, Serro, MG, Brasil. FESM= Floresta Estacional Semidecidual Montana; MC = Mata Ciliar; AC= Vegetação Arbustivo-lenhosa sobre Canga; BJ= Brejo.

Table 2. Number of exclusive families, genera and species sampled in the phytophysiognomic at Range mountain of the Serro County, MG, Brazil. FESM= Montane Semidecidual Atlantic Forest; MC = Riverine Forest; AC=Woody-Shrub vegetation on Canga; BJ= Swamp.

Fitofisionomia	Famílias	Gêneros	Espécies	Exclusivas
FESM	83	253	426	391
MC	28	57	74	54
BJ	7	10	19	18
AC	29	78	94	71

Tabela 3. Índice de similaridade de Sørensen (%) entre as fitofisionomias da Serra do Condado, Serro, MG, Brasil. FESM= Floresta Estacional Semidecidual Montana; MC = Mata Ciliar; AC= Vegetação Arbustivo- lenhosa sobre Canga Canga; BJ= Brejo.

Table 3. Percentage values of Sørensen similarity index between phytophysiognomics at Range mountain of the Serro County, MG, Brazil. FESM = Montane Semidecidual Atlantic Forest; MC = Riverine Forest; AC = Woody-Shrub vegetation on Canga; BJ= Swamp.

	FESM	MC	BJ	AC
FESM	100	5,20	0,45	6,92
MC	-	100	0	3,57
BJ	-	-	100	0
AC	_	-	-	100

Sternb. Onde a Mata Ciliar está em contato com pastagens ou estradas, a composição florística é pobre, com abundância de *Inga edulis* Mart. e *Matayba guianensis* Aubl. O sub-bosque dessa formação apresentou-se pobre com a predominância de *Celtis brasiliensis* (Gardn.) Planch. em relação às demais árvores deste estrato. Foram encontradas 74 espécies pertencentes a 28 famílias (Tabela 2). As famílias com maior número de espécies foram: Fabaceae (sete), Piperaceae (quatro) e Annonaceae (três).

Os brejos ocuparam apenas 2% de toda a área e estão localizados em planícies no fundo dos vales, com solo pedregoso de difícil drenagem, sendo algumas das nascentes e cursos d'água responsáveis pela manutenção perene dos mesmos. A saturação hídrica constante é um evento seletivo da peculiar composição florística dessa formação. Das 19 espécies encontradas, 18 foram exclusivas e apenas uma (Asclepias curassavica L.) foi compartilhada com a Mata Ciliar (Tabela 2). As famílias com maior número de espécies foram: Cyperaceae (cinco), Melastomataceae (cinco), Onagraceae (três) e Ochnaceae (duas). Alguns gêneros como Cyperus (Cyperaceae) e Ludwigia (Onagraceae) merecem destaque pela riqueza obtida em todos os brejos estudados.

As formações sobre canga cobriram cerca de 13% da área de estudo e apresentaram substrato rochoso, rico em hematita, com a formação de solos rasos nas suas pequenas depressões. A vegetação é arbustivo-lenhosa de baixa estatura, não ultrapassando 5 m de altura, com cobertura uni-estratificada. Houve a presença proporcionalmente abundante de espécies herbáceas de campo rupestre (Velloziaceae, Eriocaulaceae, Orchidaceae, Bromeliaceae, Gentianaceae, Melastomataceae, etc.), além das poucas árvores também relacionadas com solos litólicos (*Eremanthus* spp., *Gaylussacia brasiliensis* (Spreng.) Mart. e *Coccoloba cerifera* Schwacke). Nos locais de menor altitude e com a formação de um solo de maior profundidade, observou-se a formação de manchas de solo orgânico que permitiram o estabelecimento de espécies de porte mais

elevado e de ocorrência florestal (*Pera glabrata* (Schott) Poepp. ex Baill., *Andira paniculata* Benth., *Calyptranthes clusiifolia* O.Berg, *Myrceugenia ovalifolia* (O.Berg) Landrum, *Myrcia guianensis* (Aubl.) DC., etc.) constituindo uma fronteira física entre a Floresta Montana e a Vegetação Arbustiva-Lenhosa sobre Canga. Foram encontradas nessa formação 94 espécies distribuídas em 29 famílias (Tabela 2). As famílias com maior número de espécies foram: Asteraceae (nove), Orchidaceae (sete), Bromeliaceae (cinco), Apocynaceae (cinco) e Vochysiaceae (quatro).

A similaridade florísitica entre as fitofisionomias da Serra do Condado é baixa. Este fato é comprovado pela grande quantidade de espécies exclusivas de cada formação (Tabela 2) e pelas estimativas do índice de Sørensen, expressos na Tabela 3. A maior similaridade encontrada foi relacionanda à Floresta Estacional Semidecidual Montana e a Vegetação Arbustivo-Lenhosa sobre Canga (aproximadamente 0,0692%), porém este ainda é considerado muito baixo (inferior a 0,5).

Discussão

A Serra do Condado é um mosaico vegetacional com predominância da Formação Estacional Semidecidual Montana em relação à Canga, a Mata Ciliar e ao Brejo. O limite físico entre fitofisionomias foi gradual ou constante sendo difícil individualizar até mesmo algumas zonas ecotonais, embora considerando a paisagem como um todo, seja possível separar cada formação. E assim, é nítido que a altitude e o solo litólico têm estreita relação com as formações de Canga, sendo observadas sempre nos afloramentos acima dos 900 m de altitude. Em cotas inferiores há uma expansão da Formação Semidecidual Montana no solo litólico, uma fitocenose de estrutura densa (varal), baixa dominância e alto perfilhamento dos indivíduos eretos e lenhosos. Esse cenário suporta espécies florestais tolerantes a esse substrato sendo essas gradativamente substituídas pelas candeias (Erementhus spp.) com o aumento da altitude (obs. pess.). Considerando levantamentos florísticos que contemplam todas as formas de vida em áreas do Domínio Atlântico representado pelas Florestas Estacionais e Ombrófilas a riqueza encontrada neste estudo (575 espécies) está próxima do registrado por Lombardi & Gonçalves (2000) no Parque Estadual do Rio Doce (535) e está abaixo do registrado para algumas áreas ombrófilas do Rio de Janeiro e de São Paulo como Parati (Marques 1997) com 873 espécies, Macaé de Cima (Lima & Guedes-Bruni 1997) com 946 espécies e Ilha do Cardoso (Melo et al. 1991) com 852. É importante ressaltar que em todos os trabalhos acima comparados, o esforço de coleta foi superior a três anos e isso, em partes, justifica tais diferenças. Outra questão pertinente a ser abordada é em relação ao número de materiais indeterminados do presente trabalho (116 ou 20% do total). Este valor aparentemente alto de indeterminações pode ser explicado pela necessidade de mais trabalhos taxonômicos capazes de fornecer um maior número de floras e revisões, já que para alguns grupos existe ainda carência de bibliografias especializadas.

Ainda considerando a flora da Serra do Condado como um todo é possível destacar a ocorrência de algumas espécies consideradas ruderais como Alomia fastigiata Benth., Elephantopus mollis Kunth, Emilia sonchifolia (L.) DC., Galinsoga parviflora Cav., Sigesbeckia orientalis L. e Waltheria indica L., dentre outras. Este fato mostra o quanto as áreas de pastagem avançam sobre as áreas florestais e de campos naturais, refletindo na supressão de hábitats observada em toda a Serra. Em adição, segundo Giulietti et al. (2008), a Cadeia do Espinhaço é uma das regiões que concentram grande número de endemismos e espécies consideradas raras sendo algumas destas últimas também registradas nesse estudo como Hyptis coriacea Benth., Hyptis rhypidiophylla Briq. e Barbacenia exscapa Mart. Outras são

consideradas como indicadoras de Complexos Rupestres de Altitude como Agarista glaberrima (Sleumer) Judd, Gaylussacia brasiliensis (Spreng.) Mart., Barbacenia flava Mart. ex Schult. & Schult. f., Mandevilla scabra (Roem. & Schult.) K. Schum., Stipecoma peltigera (Staldem.) Mull.Arg., Eremanthus erythropappus (DC.) MacLeish, Eremanthus glomerulatus Less. e Eremanthus incanus (Less.) Less. (Benites et al. 2003). Cabe salientar que as espécies acima aludidas foram registradas preferencialmente na Vegetação Arbustivo-lenhosa sobre Canga justificando assim sua prioridade de conservação.

Em relação às áreas de Floresta Estacional Semidecidual observou-se um predomínio do hábito arbóreo em relação aos demais sendo este fato também relatado para outros levantamentos florísticos completos em Minas Gerais (todas as formas de vida) como no Morro do Imperador (Pifano et al. 2007), no Parque Estadual do Rio Doce e na Estação Ecológica de Caratinga (Lombardi & Gonçalves 2000). Isto pode ser explicado pela grande ocorrência de espécies arbóreas de sub-bosque e subdossel que apresentam estruturas reprodutivas por longos períodos do ano, facilitando sua visualização e consequentemente sua coleta. Como a maioria das formações do estado é secundária (Scolforo & Carvalho 2006) o sub-bosque é bastante iluminado nessas florestas e isso também ajuda na compreensão deste estágio fenológico apresentado por seus elementos.

A elevada riqueza de árvores encontradas na Floresta Estacional Semidecidual Montana (314) corrobora com os resultados de outros levantamentos florístico-estruturais em Florestas Montanas do Domínio Atlântico de Minas Gerais. Pereira et al. (2006), com o trabalho realizado no maciço do Itatiaia, registrou 450 espécies de árvores e Oliveira-Filho et al. (2004), na Chapada das Perdizes, Carrancas, MG, registrou 218, mostrando valores de riqueza intermediários em comparação com o deste estudo. Porém, na Estação Ecológica do Tripuí, Ouro Preto, MG (Werneck et al. 2000), a riqueza encontrada (68) foi muito menor, sendo este fato justificado pelo esforço amostral discrepante quando se compara os dois trabalhos, já que o estudo de Werneck et al. (2000) se constituiu de um levantamento estrutural da vegetação contemplando apenas 900 m² de área amostrada sob a forma de parcelas. As Matas Ciliares em melhor estado de conservação são raras e fisionomicamente indistintas das Florestas Montanas circunvizinhas, sendo possível diferenciá-las apenas por composição florística. Algumas árvores de grande porte como Ficus gomelleira Kunth & Bouché e Calophyllum brasiliense Cambess. são indícios da idade avançada e da aparente ausência de pertubação desses trechos na formação (Rodrigues & Naves 2000). Esse estágio sucessional é importante para a conservação da área de estudo sendo justificado por tal conexão entre esses hábitats, o que dificulta o acesso de pessoas e do gado e consequentemente auxilia na manutenção da qualidade e quantidade da água de toda a microbacia (Alvarenga & Paula 2000). A manutenção desses trechos é fundamental também para a conservação de algumas espécies de Acanthaceae (Herpetacanthus rubiginosos Nees) e Marantaceae (Calathea sp.), que só foram encontradas em seu sub-bosque úmido. Já nos trechos onde os rios cortam os biótopos antropizados, a Mata Ciliar apresenta-se constantemente perturbada em função do uso inadequado do solo para atividades agropastoris (Pereira 2003).

Todos os brejos estudados encontram-se isolados e desconectados de quaisquer fragmentos de Floresta Montana ou Mata Ciliar. Este fato pôde ser comprovado através da baixa riqueza florística dessa formação (apenas 19 espécies) em comparação com a alta diversidade de macrófitas relacionadas às formações brejosas segundo os trabalhos de Hoehne (1948) e Pott, A. & Pott, V.J. (2000). Ainda assim, a exclusividade específica foi a mais alta entre todas as fitofisionomias estudadas (95%), agregando valor imediato de conservação para essa formação.

Segundo Rizzini (1979), nos afloramentos hematíticos (Canga) ocorre uma fisionomia denominada Campo Ferruginoso. Tal fisionomia foi considerada por Ribeiro & Walter (1998) como Cerrado Rupestre. Não há consenso entre pesquisadores a respeito de uma terminologia que delimite e individualize essa vegetação enquanto fitofisionomia. Na Serra do Condado, a Vegetação Arbustivo-Lenhosa sobre Canga, foi considerada como uma formação não florestal uniestradificada. Assim como nos campos rupestres propriamente ditos (quartzito), seu estrato herbáceo possui elevada riqueza florística principalmente de Velloziaceae, Eriocaulaceae, Orchidaceae, Bromeliaceae, Gentianaceae, Melastomataceae e Poaceae, sendo essas, muitas vezes, as melhores indicadoras dessas fitofisionomias bem como de seu grau de conservação (Giulietti et al. 2000, Stannard 1995). Assim sendo, justifica-se a subestimativa amostral das famílias Poaceae e Orchidaceae neste estudo por duas razões principais. A primeira é relativa ao método utilizado em levantamentos florísticos que contempla somente materiais reprodutivos como testemunhos. Assim, muitas orquídeas foram observadas, mas não puderam ser registradas nem como morfoespécies, pois se manifestavam vegetativamente apenas por seus pseudobulbos. No caso das gramíneas a razão da subestimativa é outra. Nas áreas mais altas da Serra, onde se localiza a Vegetação Arbustivo-Lenhosa sobre Canga, o acesso para as coletas e o trabalho de campo foi extremamente prejudicado por questões fundiárias e de propriedade, sendo raros os proprietários que permitiram o acesso dos autores a suas terras para a execução do trabalho. Não obstante, a falta de levantamentos florísticos em formações específicas como esta dificulta análises comparativas dessa flora com outras semelhantes. Neste contexto, destaca-se apenas o trabalho desenvolvido em Brumadinho (Viana & Lombardi 2007), no Quadrilátero Ferrífero, MG, onde registraram 358 espécies de plantas vasculares ocorrentes em canga couraçada e canga nodular. Das 94 espécies encontradas na canga couraçada da Serra do Condado, 31 também foram encontradas em Brumadinho, sendo que tal compartilhamento encontrou-se bem distribuído nas duas áreas de canga aqui comparadas.

As estimativas obtidas através do índice de Sørensen revelaram valores inferiores a 10% de similaridade corroborando com a significativa diversidade beta analisando-se as fitofisionomias estudadas. O maior compartilhamento de espécies entre a Floresta Montana e a Vegetação sobre Canga se deve, em parte, à presença de espécies florestais tolerantes aos solos litólicos ocorrentes principalmente nas regiões ecotonais dessas duas fitofisionomias. Isto foi percebido nesse trabalho pela ocorrência de um grupo de espécies arbóreas que se desenvolvem sobre a rocha mãe aflorada, caso da Asteraceae Eremanthus spp. (candeia) e da Ericaceae Gaylussacia brasiliensis (Spreng.) Mart. Este cenário é amplamente relatado para regiões onde a Floresta Semidecídua Montana se insere nos Complexos Rupestres de altitude (Benites et al. 2003). O mosaico vegetacional estudado reflete o quão diversa e desconhecida é a flora das regiões montanhosas de Minas Gerais e o quanto sua conservação está ameaçada. A corrida minerária que se instalou na região foi responsável por grande parte do efeito de borda e da fragmentação observados neste estudo, bem como à baixa quantidade de hábitats conectados, fazendo-os ora presentes, ora não, em toda a Serra do Condado.

Embora este estudo seja ainda uma aproximação de toda a flora existente na região (devido às limitações temporal e logística), os resultados mostraram uma riqueza florística elevada com espécies raras e indicadoras das muitas fisionomias que formam a paisagem da Cadeia do Espinhaço. Não obstante, os resultados encontrados em estudos florísticos criteriosos como este são a principal ferramenta no conhecimento da flora de uma região e consequentemente são também importantíssimos na descoberta de

novas espécies e na conservação das poucas áreas ainda capazes de manter e repor a tão ameaçada diversidade vegetal do estado de Minas Gerais.

Agradecimentos

A J.A.Silveira e A.L. Souza, pelos auxílios prestados nos trabalhos de campo. Obrigado.

Referências

- ALVARENGA, M.I.N. & PAULA, M.B. 2000. Planejamento conservacionista em microbacias. Inf. Agropecu. 21(207):55-64.
- ANDRADE, P.M., GONTIJO, T.A. & GRANDI, T.S.M. 1986. Composição florística e aspectos estruturais de uma área de Campo Rupestre do Morro do Chapéu, Nova Lima, Minas Gerais. Rev. Bras. Bot. 9(1):13-21.
- ANGIOSPERM PHYLOGENY GROUP APGII. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. J. Linn. Soc. Lond. Bot. 141:399-436.
- ARAÚJO, F.S. 1998. Estudos fitogeográficos do carrasco no nordeste do Brasil. Tese de Doutorado, Universidade Estadual de Campinas, Campinas, 97 p.
- BENITES, V.M., CAIAFA, A.N., MENDONÇA, E.S., SCHAEFER, C.E. & KER, J.C. 2003. Solos e vegetação nos complexos rupestres de altitude da Mantiqueira e do Espinhaço. Floresta Ambient. 10(1):76-85.
- BRANDÃO, M. & GAVILANES, M.L. 1990. Mais uma contribuição para o conhecimento da Cadeia do Espinhaço em Minas Gerais (Serra da Piedade)-II. Daphne 1(1):26-43.
- CENTRO TECNOLÓGICO DE MINAS GERAIS CETEC. 1983. Diagnóstico ambiental do Estado de Minas Gerais. Minas Gerais, 158 p. (Série de Publicações Técnicas/SPT010)
- CONCEIÇÃO, A.A. & GIULIETTI, A.M. 2002. Composição florística e aspectos estruturais de campo rupestre em dois platôs no Morro do Pai Inácio, Chapada Diamantina, Bahia, Brasil. Hoehnea 29(1):37-48.
- DEAN, W. 1996. A ferro e fogo: a história e a devastação da Mata Atlântica brasileira. Companhia das Letras, São Paulo, 484 p.
- DRUMMOND, G.M., MARTINS, C.S., MACHADO, A.B.M., SEBAIO, F.A. & ANTONINI, Y. 2005. Biodiversidade em Minas Gerais: um atlas para sua conservação. 2 ed. Fundação Biodiversitas, Belo Horizonte, 222 p.
- FIDALGO, O. & BONONI, V.L.R. 1984. Técnicas de coleta, preservação e herborização de material botânico. Instituto de Botânica, São Paulo, 62 p.
- GENTRY, A.H. 1990. Floristic similarities and differences between Southern Central America and upper and Central Amazonia. In Four neotropical rain forests (A.H. Gentry, ed.). Yale University Press, London, p. 141-160.
- GIULIETTI, A.M., MENEZES, N.L., PIRANI, J.R., MEGURO, M. & WANDERLEY, M.G.L. 1987. Flora da Serra do Cipó: caracterização e lista de espécies. Boletim de Botânica da Universidade de São Paulo 9:1-151.
- GIULIETTI, A.M., HARLEY, R.M., QUEIROZ, L.P., WANDERLEY, M.G.L. & PIRANI, J.R. 2000. Caracterização e endemismos nos campos rupestres da Cadeia do Espinhaço. In Tópicos atuais em botânica (T.B. Cavalcanti & B.M.T.Walter, orgs). 1 ed. SBB; CENARGEN, Brasília, p. 311-318.
- GIULIETTI, A.M., RAPINI, A., ANDRADE, M.J.G., QUEIROZ, L.P. & SILVA, J. M.C. 2008. Plantas raras do Brasil. Conservação Internacional, Belo Horizonte, 495 p.
- HOEHNE, F.C. 1948. Plantas aquáticas. Instituto de Botânica, São Paulo, 168 p.
- KENT, M. & COKER, P. 1992. Vegetation description and analysis: a practical approach. Belhaven Press, London, 363 p.
- LIMA, H.C. & GUEDES-BRUNI, R.R. 1997. Serra de Macaé de Cima: diversidade florística e conservação em Mata Atlântica. 1 ed. Jardim Botânico do Rio de Janeiro, Rio de Janeiro, 346 p.

- LOMBARDI, J.A. & GONÇALVES, M. 2000. Composição florística de dois remanescentes de Mata Atlântica do sudeste de Minas Gerais, Brasil. Rev. Bras. Bot. 23(3):255-282.
- LOPES, W.P., SILVA, A.L. & MEIRA NETO, J.A. 2002. Estrutura Fitossociológica de um trecho de vegetação arbórea no Parque Estadual do Rio Doce Minas Gerais, Brasil. Acta Bot. Bras. 16(4):443-456.
- MARQUES, M.C.M. 1997. Mapeamento da cobertura vegetal e listagem das espécies ocorrentes na Área de Proteção Ambiental de Cairuçu, Parati, RJ. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, p. 1-96. (Série Estudos e Contribuições, n. 13.)
- MEGURO, M., PIRANI, J.R., GIULIETTI, A.M. & MELLO-SILVA, R. 1994. Phytophysiognomy and composition of the vegetation of Serra do Ambrósio, Minas Gerais, Brazil. Rev. Bras. Bot. 17(2):149-166.
- MELO, M.M.R.F., BARROS, F., CHIEA, S.A.C., WANDERLEY, M.G.L., JUNG-MENDAÇOLLI, S.L. & KIRIZAWA, M. 1991. Flora Fanerogâmica da Ilha do Cardoso. Instituto de Botânica, São Paulo, 165 p. (v. 1)
- MELO, L.C.N. & SALINO, A. 2002. Pteridófitas de duas áreas de floresta da Bacia do Rio Doce no Estado de Minas Gerais, Brasil. Lundiana 3(2):129-139.
- MOURÃO, A. & STEHMANN, J.R. 2007. Levantamento da flora do campo rupestre sobre canga Hematítica couraçada remanescente na mina do Brucutu, Barão de Cocais, Minas Gerais, Brasil. Rodriguésia 58(4):775-786.
- MURRAY-SMITH, C., BRUMMITT, N.A., OLIVEIRA FILHO, A.T., BACHMAN, S., MOAT, J., LUGHADHA, E.M.N. & LUCAS, E.J. 2008. Plant diversity hotspots in the Atlantic coastal forests of Brazil. Conservation Biol. 23(1):151-163.
- NÉRI, A.V., MEIRA NETO, J.A., SILVA, A.F., MARTINS, S.V. & BATISTA, M.L. 2007. Análise da estrutura de uma comunidade lenhosa em área de cerrado sensu stricto no município de Senador Modestino Gonçalves, norte de Minas Gerais, Brasil. Rev. Árvore 31(1):123 -134.
- OLIVEIRA FILHO, A.T. 1993. Gradient analysis of an area of coastal vegetation in the state of Paraíba, northeastern Brazil. Edinb. J. Bot. 50(2):217-236.
- OLIVEIRA FILHO, A.T., ALMEIDA, R.J., MELLO, J.M. & GAVILANES, M.L. 1994a. Estrutura fitossociológica e variáveis ambientais em um trecho da mata ciliar do córrego dos Vilas Boas, Reserva Biológica do Poço Bonito, Lavras (MG). Rev. Bras. Bot. 17(1):67-85.
- OLIVEIRA FILHO, A.T., VILELA, E.A., GAVILANES, M.L. & CARVALHO, D.A. 1994b. Comparison of the woody flora and soils of six areas of montane semideciduous forest in Southern Minas Gerais, Brazil. Edinb. J. Bot. 51(3):355-389.
- OLIVEIRA FILHO, A.T. & RATTER, J.A. 1995. A study of the origin of central Brazilian forests by the analysis of plants species distribution patterns. Edinb. J. Bot. 52(2):141-194.
- OLIVEIRA FILHO, A.T. & FONTES, M.A.L. 2000. Patterns of floristic differentiation among Atlantic Forest in South-Eastern Brazil and the influence of climate. Biotropica 32(suppl. 5):1-16.
- OLIVEIRA FILHO, A.T., CARVALHO, D.A., FONTES, M.A.L., BERG, E.V.D., CURI, N. & CARVALHO, W.A.C. 2004. Variações estruturais do compartimento arbóreo de uma floresta semidecídua alto-montana na chapada das Perdizes, Carrancas, MG. Rev. Bras. Bot. 27(2):291-309.
- OLIVEIRA FILHO, A.T., TAMEIRÃO NETO, E., CARVALHO, W.A.C., BRINA, A. E., WERNECK, M., VIDAL, C. & REZENDE, S. 2005. Análise florística do compartimento arbóreo de áreas de Floresta Atlântica sensu lato na região das Bacias do Leste (Bahia, Minas Gerais, Espírito Santo e Rio de Janeiro). Rodriguésia 56(87):185-235.
- PEREIRA, I.M., OLIVEIRA FILHO, A.T., BOTELHO, S.A., CARVALHO, W.A.C., FONTES, M.A.L., SCHIAVINI, I. & SILVA, A.F. 2006. Composição florística do compartimento arbóreo de cinco remanescentes florestais do maciço do Itatiaia, Minas Gerais e Rio de Janeiro. Rodriguésia 57(1):103-126.
- PEREIRA, J.A.A. 2003. Efeitos dos impactos ambientais e da heterogeneidade ambiental sobre a diversidade e estrutura da comunidade arbórea de 20 fragmentos de florestas semidecíduas da região do Alto Rio Grande,

- Minas Gerais. Tese de Doutorado, Universidade Federal de Minas Gerais, Belo Horizonte, 156 p.
- PEREIRA, J.A.A., OLIVEIRA FILHO, A.T. & LEMOS FILHO, J.P. 2007. Environmental heterogeneity and disturbance by humans control much of the tree species diversity of fragments of tropical montane seasonal forests in SE Brazil. Biodiversity Conserv. 16(6):1761-1784.
- PIFANO, D.S., VALENTE, A.S.M., CASTRO, R.M., PIVARI, M.O.D., SALIMENA, F.R.G. & OLIVEIRA FILHO, A.T. 2007. Similaridade entre as fisionomias da vegetação do Morro do Imperador, Juiz de Fora, MG, com base na composição de sua flora fanerogâmica. Rodriguésia 58(8):885-904.
- POTT, A. & POTT, V.J. 2000. Plantas aquáticas do Pantanal. Editora da UnB, Brasília, 404 p.
- RAUNKIAER, C. 1934. The life forms of plants and statistical geography. Clarendon, Oxford.
- RIBEIRO, J.F. & WALTER, B.M.T. 1998. Fitofisionomia do bioma Cerrado. In Cerrado: ambiente e flora (S.M. Sano & S.P. Almeida). EMBRAPA, Planaltina, p. 89-152.
- RIZZINI C.T. 1979. Tratado de Fitogeografia do Brasil. HUCITEC; EDUSP, São Paulo.
- RODRIGUES, R.R. & NAVE, A.G. 2000 Heterogeneidade florística das matas ciliares. In Matas ciliares: conservação e recuperação (R.R. Rodrigues & H.F. Leitão Filho). Universidade de São Paulo; Fapesp, São Paulo, p. 45-71.
- SALIS, S.M., SHEPHERD, G.J. & JOLY, C.A. 1995. Floristic comparison of mesophytic semideciduous forest of the interior of the state of São Paulo, Southeast Brazil. Vegetation 119(2):155-164.
- SCOLFORO, J.R.S. & CARVALHO, L.M.T. 2006. Mapeamento e inventário da flora nativa e dos reflorestamentos de Minas Gerais. Editora UFLA,
- SCUDELLER, V.V., MARTINS, F.R. & SHEPHERD, G.J. 2001. Distribution and abundance of arboreal species in the Atlantic Ombrophilous Dense Forest in Southeastern Brazil. Plant Ecol. 152(2):185-199.
- SCUDELLER, V.V. 2002. Análise fitogeográfica da Mata Atlântica Brasil. Tese de Doutorado, Universidade Estadual de Campinas, Campinas, 204 p.

- SILVA, A.F. & SHEPHERD, G.J. 1986. Comparações florísticas entre algumas matas brasileiras utilizando análise de agrupamento. Rev. Bras. Bot. 9(1):81-86.
- SMITH, A.R., PRYER, K.M., SCHUETTPELZ, E., KORALL, P., SCHNEIDER, H. & WOLF, P.G. 2006. A classification for extant ferns. Taxon 55(3):705-731.
- SOUZA, V.C. & LORENZI, H. 2008. Botânica sistemática: guia ilustrado para identificação das famílias de Angiospermas da flora brasileira em APG II. 2 ed. Instituto Plantarum, Nova Odessa, 640 p.
- STANNARD, B.L. 1995. Flora of the Pico das Almas, Chapada Diamantina, Bahia, Brazil. Royal Botanic Gardens, Kew, 853 p.
- TORRES, R.B., MARTINS, F.R. & KINOSHITA, L.S. 1997. Climate, soil and tree flora relationships in forests in the state of São Paulo, Southeastern Brasil. Rev. Bras. Bot. 20(1):41-49.
- TRYON, R.M. & TRYON, A.F. 1982. Ferns and allied plants, with special reference to Tropical America. Springer-Verlag, New York, 857 p.
- VELOSO, H.P., RANGEL, A.L.R. & LIMA, J.C.A. 1991. Classificação da vegetação brasileira, adaptada a um sistema universal. IBGE, Rio de Janeiro, 124 p.
- VIANA, P.L. & LOMBARDI, J.A. 2007. Florística e caracterização dos campos rupestres sobre canga na Serra da Calçada, Minas Gerais, Brasil. Rodriguésia 58(1): 159-177.
- VINCENT, R.C. & MEGURO M. 2008. Influence of soil properties on the abundance of plant species in ferruginous rocky soils vegetation, southeastern Brazil. Rev. Bras. Bot. 31(3):377-388.
- WERNECK, M.S., PEDRALLI, G., KOENIG, R. & GISEKE, L.F. 2000. Florística e estrutura de três trechos de uma floresta semidecídua na Estação Ecológica do Tripuí, Ouro Preto, MG. Rev. Bras. Bot. 23(1):97-106.

Recebido em 12/05/09 Versão reformulada recebida em 22/01/10 Publicado em 27/01/10