Acessibilidade / Reportar erro

Effects of deforestation pattern and private nature reserves on the forest conservation in settlement areas of the Brazilian Amazon

Abstracts

The effects of deforestation patterns, private nature-reserve extents and agricultural fallow periods on forest conservation were simulated for settlement projects in the Brazilian Amazon that produce a fish-bone pattern of occupation and where slash-and-burn agriculture is predominantly used. Data for simulation was obtained from previous work at the Bragantina region, the oldest agricultural frontier in the Brazilian Amazon. Forest conservation was evaluated using the size of remnant forest fragments, the amount of interior habitat, the connectivity among fragments and the extent of fragmentation. Results showed that the best scenario for forest conservation is the maintenance of 80% of the lot as privatereserve using deforestation pattern that allow to group the reserves from different farmers at the end of the lot. When private-reserve coverage is bellow 80% of the landscape, forest conservation status will be influenced by the deforestation pattern. Some patterns (e.g. random location of deforestation plots) will then be particularly deleterious, producing a highly fragmented landscape, while other patterns (e.g., progressive deforestation from one edge) can allow the maintenance of large forest fragments. To get forest conservation in these cases, private-reserve extent and deforestation pattern should be considered together. Considering both forest conservation and agricultural use, progressive patterns of deforestation (or land use) in a lot of 2,000m by 500m, with private nature-reserves covering 50% of the landscape seems to be the best compromise. To guarantee the private forest preservation, these forests should be pre-established when settlements are planned and grouped at the end of the lots.

Deforestation pattern; private nature reserve; forest conservation; landscape planning; Amazonian tropical forest


Os efeitos de padrões de desmatamento, de extensão das "Reservas Legais" e do tempo de pousio agrícola na conservação florestal foram simulados para assentamentos agrícolas da Amazônia brasileira que produzem padrões de ocupação em espinha-de-peixe" e onde a prática agrícola predominante é de corte-e-queima. As simulações basearam-se na dinâmica da paisagem da região da Bragantina, a mais antiga fronteira agrícola da Amazônia brasileira. O estado de conservação florestal foi inferido utilizando-se o tamanho dos remanescentes florestais, a extensão de floresta de interior, a conectividade e o grau de fragmentação florestal. Os resultados mostram que o melhor cenário para conservação é a manutenção de 80% das propriedades como Reserva Legal (RL) e a utilização de um padrão de desmatamento que permite o agrupamento dos remanescentes florestais dos diferentes proprietários numa única reserva, no fundo dos lotes. Quando RL< 80%, o estado de conservação florestal varia muito em função do padrão de desmatamento. Alguns padrões (e.g., aleatórios) são nesse caso particularmente deletérios, resultando em paisagens altamente fragmentadas, enquanto outros padrões (e.g., desmatamento progressivo a partir das bordas florestais) são capazes de manter grandes fragmentos. Para conservar a floresta quando RL< 80%, o padrão de desmatamento e a extensão das RL têm que ser consideradas conjuntamente. Padrões de desmatamento progressivos em lotes de 2000m por 500m, com RL de 50%, parecem resultar no melhor balanço entre conservação florestal e uso agrícola. Para garantir a conservação, o agrupamento das RL no fundo dos lotes deve ser definido no momento do planejamento dos assentamentos.

Padrão de desmatamento; Reservas Legais; conservação florestal; planejamento da paisagem; florestal tropical amazônica


ARTIGOS

Effects of deforestation pattern and private nature reserves on the forest conservation in settlement areas of the Brazilian Amazon

Jean Paul Metzger

Department of Ecology Institute of Bioscience University of São Paulo Rua do Matão, 321, travessa 14, 05508-900, São Paulo, SP, Brazil Phone: + 55 11 38187564 Fax: + 55 11 38134151 E-Mail: jpm@ib.usp.br

ABSTRACT

The effects of deforestation patterns, private nature-reserve extents and agricultural fallow periods on forest conservation were simulated for settlement projects in the Brazilian Amazon that produce a fish-bone pattern of occupation and where slash-and-burn agriculture is predominantly used. Data for simulation was obtained from previous work at the Bragantina region, the oldest agricultural frontier in the Brazilian Amazon. Forest conservation was evaluated using the size of remnant forest fragments, the amount of interior habitat, the connectivity among fragments and the extent of fragmentation. Results showed that the best scenario for forest conservation is the maintenance of 80% of the lot as privatereserve using deforestation pattern that allow to group the reserves from different farmers at the end of the lot. When private-reserve coverage is bellow 80% of the landscape, forest conservation status will be influenced by the deforestation pattern. Some patterns (e.g. random location of deforestation plots) will then be particularly deleterious, producing a highly fragmented landscape, while other patterns (e.g., progressive deforestation from one edge) can allow the maintenance of large forest fragments. To get forest conservation in these cases, private-reserve extent and deforestation pattern should be considered together. Considering both forest conservation and agricultural use, progressive patterns of deforestation (or land use) in a lot of 2,000m by 500m, with private nature-reserves covering 50% of the landscape seems to be the best compromise. To guarantee the private forest preservation, these forests should be pre-established when settlements are planned and grouped at the end of the lots.

Key-words: Deforestation pattern, private nature reserve, forest conservation, landscape planning, Amazonian tropical forest

RESUMO

Os efeitos de padrões de desmatamento, de extensão das "Reservas Legais" e do tempo de pousio agrícola na conservação florestal foram simulados para assentamentos agrícolas da Amazônia brasileira que produzem padrões de ocupação em espinha-de-peixe" e onde a prática agrícola predominante é de corte-e-queima. As simulações basearam-se na dinâmica da paisagem da região da Bragantina, a mais antiga fronteira agrícola da Amazônia brasileira. O estado de conservação florestal foi inferido utilizando-se o tamanho dos remanescentes florestais, a extensão de floresta de interior, a conectividade e o grau de fragmentação florestal. Os resultados mostram que o melhor cenário para conservação é a manutenção de 80% das propriedades como Reserva Legal (RL) e a utilização de um padrão de desmatamento que permite o agrupamento dos remanescentes florestais dos diferentes proprietários numa única reserva, no fundo dos lotes. Quando RL< 80%, o estado de conservação florestal varia muito em função do padrão de desmatamento. Alguns padrões (e.g., aleatórios) são nesse caso particularmente deletérios, resultando em paisagens altamente fragmentadas, enquanto outros padrões (e.g., desmatamento progressivo a partir das bordas florestais) são capazes de manter grandes fragmentos. Para conservar a floresta quando RL< 80%, o padrão de desmatamento e a extensão das RL têm que ser consideradas conjuntamente. Padrões de desmatamento progressivos em lotes de 2000m por 500m, com RL de 50%, parecem resultar no melhor balanço entre conservação florestal e uso agrícola. Para garantir a conservação, o agrupamento das RL no fundo dos lotes deve ser definido no momento do planejamento dos assentamentos.

Palavras-chave: Padrão de desmatamento, Reservas Legais, conservação florestal, planejamento da paisagem, florestal tropical amazônica.

Full text available only in PDF format.

Texto completo disponível apenas em PDF.

ACKNOWLEDGEMENTS

This research work was conducted in the framework of the German-Brazilian program in applied ecosystem research "SHIFT" (Studies on Human Impact on Forests and Floodplains in the Tropics), carried out under the auspices of the Agreement on Cooperation in Scientific Research and Technological Development signed by the governments of the Federal Republic of Germany and the Federative Republic of Brazil. The program is financially supported by BMBF (German Ministry for Education, Science, Research and Technology) and CNPq (Brazilian National Council of Scientific and Technologial Development). The executing institutions of the project "Secondary Forests and Fallow Vegetation in the Eastern Amazon Region - Function and Management", short SHIFT-Capoeira, are the Center for Development Research (ZEF) of the University of Bonn, Germany and the Agroforestry Research Center of the Eastern Amazon, Embrapa Amazônia Oriental, Belém, Brazil. This research was also supported by grants from CNPq (nº. 300760/96-5-RE) and Fapesp (São Paulo state Science Foundation, nº. 96/10336-9). I thank William Laurance and an anonymous reviewer for valuable comments on an earlier version of the manuscript.

Skole, D. and Tucker, C. 1993. Tropical deforestation and

Received: August 01, 2001

Accepted: September 05, 2001

  • Alves, D.S., Pereira, J.L.G., de Sousa C.L., Soares, J.V.,Yamaguchi, F., 1999. Characterizing landscape changes in central Rondônia using Landsat TM imagery. International Journal of Remote Sensing 20, 2877-2882.
  • Attiwill, P.M., 1994. The disturbance of forest ecosystems: the ecological basis for conservative management. For. Ecol. Manage. 63, 247-300.
  • Beier, P. & Noss, R.F. 1998. Do habitat corridors provide connectivity ? Conservation Biology 12: 1241-1252.
  • Bellamy, P.E., Hinsley, S.A. & Newton, I. 1996. Local extinctions and recolonisations of passerine bird populations in small woods. Oecologia 108: 64-71.
  • Brondizio, E.S., McCracken, S.D., Moran, E.F., Siqueira, A.D., Nelson, D.R. and Rodriguez-Pedraza, C. The colonist footprint: towards a conceptual framework of land use and deforestation trajectories among small farmers in frontier Amazônia. In Wood, C. et al. Patterns and processes of land use and forest change in the Amazon. University of Florida Press, Gainsville, in press
  • Collinge, S.K. and Forman, R.T.T. 1998. A conceptual model of land conversion processes: predictions and evidence from a microscale experiment with grassland insects. OIKOS 82: 66-84.
  • Dale, V.H., O'Neill, R.V., Pedlowski, M. and Southworth, F. 1993a. Causes and effects of land-use change in Central Rondônia, Brazil. Photogrammetric Engineering & Remote Sensing 59: 997-1005.
  • Dale, V.H., Southworth, F., O'Neill, R.V., Rosen, A. and Frohn, R. 1993b. Simulating spatial patterns of land-use change in Rondônia, Brazil. Lectures on Mathematics in the Life Sciences 23: 29-55.
  • Dale, V.H., O'Neill R.V., Southworth, F. and Pedlowski, M. 1994. Modeling effects of land management in the brazilian amazonian settlement of Rondônia. Conservation Biology 8: 196-206.
  • Dias, B.F.S. (coord.) 1998. Primeiro relatório nacional para a convenção sobre diversidade biológica (Brasil). Ministério do Meio Ambiente, dos Recursos Hídricos e da Amazônia Legal, Brasília.
  • Fahrig, L. and Merriam, G. 1985. Habitat patch connectivity and population survival. Ecology 66: 1762-1768.
  • Fahrig, L. and Merriam, G. 1985. Habitat patch connectivity and population survival. Ecology 66: 1762-1768.
  • Fearnside, P.M. 1999. Biodiversity as an environmental service in Brazil's Amazonian forests: risks, value and conservation. Environmental Conservation 26: 305-321.
  • Fearnside, P.M. 2000. Global warming and tropical landuse change: Greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Climatic Change 46: 115-158.
  • Forman, R.T.T. 1995. Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge.
  • Forman, R.T.T. and Mellinger, A.D. 1999. Road networks and forest spatial patterns: comparing cuttingsequence models for forestry and conservation. In Craig, J.L., Mitchell, N. and Saunders, D.A. (eds.). Nature Conservation 5: nature conservation in production environments: managing the matrix. Surrey Beatty & Sons, Chipping Norton, New South Wales, Australia pp. 71-80.
  • Forman, R.T.T., Galli, A.E. and Leck, C.F. 1976. Forest size and avian diversity in New Jersey woodlots with some land use implications. Oecologia 26: 1-8.
  • Franklin, J.F. and Forman, R.T.T. 1987. Creating landscape pattern by forest cutting: ecological consequences and principles. Landscape Ecology 1: 5-18.
  • Frohn, R.C., McGwire, K.C., Dale, V.H. and Estes, J.E. 1996. Using satellite remote sensing analysis to evaluate a socio-economic and ecological model of deforestation in Rondônia, Brazil. Int. J. Remote Sensing 17: 3233-3255.
  • Fujisaka, S., Bell, W., Thomas, N., Hurtado, L. and Crawford, E. 1996. Slash-and-burn agriculture, conversion to pasture, and deforestation in two Brazilian Amazon colonies. Agriculture Ecosystems & Environment 59: 115-130.
  • Gascon, C. Lovejoy, T. E. Bierregaard Jr., R. O. Malcolm, J. R. Stouffer, P. C. Vasconcelos, H. L. Laurance, W. F. Zimmerman, B. Tocher, M. Borges. S. 1999. Matrix habitat and species richness in tropical forest remnants. Biological Conservation 91: 223-229.
  • Harper, L. H. 1988. The persistence of ant-following birds in small Amazonian forest fragments. Acta Amazonica. 18: 249-263.
  • Homma, A.K.O., Walker, R.T., Scatena, F.N., Conto, A.J., Carvalho, R., Rocha, A.C.P.N., Ferreira, C.A.P., Santos, A.I.M., 1993. Dynamics of deforestation and burning in Amazonia: a microeconomic analysis. Overseas Development Institute, Rural Development Forestry Network, Network Paper 16c. Regent's College, Regent's Park, London.
  • Instituto Nacional de Colonização e Reforma Agrária (INCRA), 1996. Dossiê, Divisão de Assentamentos (Porto Velho) (Working report, December 1998).
  • Instituto Nacional de Pesquisas Espaciais (INPE). 1999. Monitoramento da floresta amazônica por satélite (1997-1998). INPE-7989-RPQ/714, Ministério de Ciência e Tecnologia, São José dos Campos, SP.
  • Kato M.S.A., Kato, O.R., Denich, M., Vlek, P.L.G. 1999. Fire-free alternatives to slash-and-burn for shifting cultivation in the eastern Amazon region: the role of fertilizers. Field crops research 62: 225-237.
  • Laurance, W.F. 2000. Mega-development trends in the Amazon: Implications for global change. Environmental Monitoring and Assessment 61: 113-122.
  • Laurance, W.F., Cochrane, M.A., Bergen, S., Fearnside, P.M., Delamônica, P., Barber, C., D'Angelo, S. and Fernandes, T. 2001. The future of Brazilian Amazon. Science 291: 438-439.
  • Laurance, W.F. & Bierregaard, R.O., Jr. (Eds.). 1997. Tropical forest remnants: ecology, management, and conservation of fragmented communities. The University of Chicago Press, Chicago & London.
  • Laurance, W.F., Laurance, S.G., Ferreira, L.V., Rankin-de Merona, J.M., Gascon, C. & Lovejoy, T.E. 1997. Biomass collapse in Amazonian forest fragments. Science 278: 1117-1118.
  • Laurance, W.F., Laurance S.G. and Delamonica, P. 1998a. Tropical forest fragmentation and greenhouse gas emissions. Forest Ecology and Management 110: 173-180.
  • Laurance W.F., Ferreira L.V., Rankin-De Merona J.M. and Laurance, S.G. 1998b. Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology 79: 2032-2040.
  • Li, H., Franklin, J.F., Swanson, F.J. and Spies, T.A. 1993. Developing alternative forest cutting patterns: a simulation approach. Landscape Ecology 8: 63-75.
  • Lindenmayer D.B., Margules C.R., Botkin D.B. 2000. Indicators of biodiversity for ecologically sustainable forest management. Conservation Biology 14: 941-950.
  • McCracken, S., Brondizio, E.S., Nelson, D., Moran, E.F., Siqueira, A.D. and Rodriguez-Pedraza, C. 1999. Remote sensing and GIS at farm property level: demography and deforestation in the Brazilian Amazon. Photogrammetric Engineering & Remote Sensing 65: 1311-1320.
  • McGarigal, K. & Marks, B.J. 1995. FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. U.S. Forest Service General Technical Report PNW 351.
  • Metzger, J.P. 2000. Tree functional group richness and spatial structure in a tropical fragmented landscape (SE Brazil). Ecological Applications, 10: 1147-1161.
  • Metzger, J.P. Landscape dynamic and equilibrium in areas of slash-and-burn agriculture with short and long fallow period (Bragantina region, NE Brazilian Amazon). Landscape Ecology, in press
  • Metzger, J.P. Effect of fallow period on the landscape structure at site and property levels (Bragantina region, NE Amazon, Brazil). Submitted
  • Metzger, J.P. & Muller, E. 1996. Characterizing the complexity of landscape boundaries by remote sensing. Landscape Ecology 11: 65-77.
  • Metzger, J.P. & Décamps, H. 1997. The structural connectivity threshold: an hypothesis in conservation biology at the landscape scale. Acta cologica 18: 1-12.
  • Moran, E. F., Brondizio, E.S. and McCracken, S. Trajectories of land use: soils, succession, and crop choice. In Wood, C. et al. Patterns and processes of land use and forest change in the Amazon. University of Florida Press, Gainsville, in press
  • Murcia, C. 1995. Edge effects in fragmented forests: implications for conservation. TREE 10: 58-62
  • Nepstad, D.C., Moutinho, P.R., Uhl, C., Vieira, I.C. and Silva, J.M.C. 1996. The ecological importance of forest remnants in an Eastern Amazonian frontier landscape. In Forest patches in tropical landscapes, pp. 133-150. Edited by Schellas, J. and Greenberg, R. Island press: Washington, D.C.
  • Oliveira-Filho, F.J.B. 2001. Padrão de desmatamento e evolução da estrutura da paisagem em Alta Floresta (MT). Master Thesis, University of São Paulo, SP, Brazil.
  • Penteado, A.R. 1967. Problemas de colonização e de uso da terra na região Bragantina do Estado do Pará. Coleção Amazônica, Série José Veríssimo, Universidade Federal do Pará: Pará, PA.
  • Peres, C.A. and Terborgh, J.W. 1995. Amazonian naturereserves: an analysis of the defensibility status of existing conservation units and design criteria for the future. Conservation Biology 9: 34-46.
  • Purata, S.E., 1986. Floristic and structural changes during old-field succession in the Mexican tropics in relation to site history and species availability. J. Trop. Ecol. 2, 257-276.
  • Quintana-Ascencio, P.F., González-Espinosa, M., Ramirez-Marcial, N., Dominguez-Vázquez, G., Martinez-Icó, M., 1996. Soil seed banks and regeneration of tropical rain forest from milpa fields at the Selva Lacandona, Chiapas, Mexico. Biotropica 28, 192-209.
  • Rolstad, J. 1991. Consequences of forest fragmentation for the dynamics of bird populations: conceptual issues and the evidence. Biological Journal -Linnean Society 41: 149-163.
  • Rosenberg, D.K., Noon, B.R. & Meslow, E.C. 1997. Biological corridors: form, function, and efficacy. BioScience 47: 677-687.
  • Saulei, S.M., Swaine, M.D., 1988. Dynamics of seed rain and soil seed banks during forest clearance and subsequent regrowth in the Gogol Valley, Papua New Guinea. J. Ecol. 76, 133-152.
  • Saunders, D.A., Hobbs, R.J. & Margules, C.R. 1991. Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5: 18-32.
  • Scatena, F.N., Walker, R.T., Homma, A.K.O., de Conto, A.J., Ferreira, C.A.P., Carvalho, R.D., da Rocha A.C.P.N., Santos, A.I.M.D., de Oliveira, P.M. 1996. Cropping and fallowing sequences of small farms in the "terra firme" landscape of the Brazilian Amazon: A case study from Santarém, Pará. Ecological Economics 18: 29-40.
  • Seagle, S.W. 1986. Generation of species-area curves by a model of animal-habitat dynamics. In: Verner, M.L., Morrisson, M.L. & Ralph, C.J. (Eds.), Wildlife 2000. Modeling habitat relationships of terrestrial vertebrates. The University of Wisconsin Press, Madison, Wisconsin, p. 281-285.
  • Serra, J. 1982. Image analysis and mathematics morphology. Academic press, New York.
  • Serrão, E.A.S., Nepstad, D. and Walker, R. 1996. Upland agricultural and forestry development in the Amazon: sustainability, criticality and resilience. Ecological Economics 18: 3-13.

Publication Dates

  • Publication in this collection
    11 June 2013
  • Date of issue
    2001

History

  • Accepted
    05 Sept 2001
  • Received
    01 Aug 2001
Instituto Virtual da Biodiversidade | BIOTA - FAPESP Departamento de Biologia Vegetal - Instituto de Biologia, UNICAMP CP 6109, 13083-970 - Campinas/SP, Tel.: (+55 19) 3521-6166, Fax: (+55 19) 3521-6168 - Campinas - SP - Brazil
E-mail: contato@biotaneotropica.org.br